971 resultados para Corticotropin releasing factor receptors


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The basic framework for the JAK/STAT pathway is well documented. Recruitment of latent cytoplasmic STAT transcription factors to tyrosine phosphorylated docking sites on cytokine receptors and their JAK-mediated phosphorylation instigates their translocation to the nucleus and their ability to bind DNA, The biochemical processes underlying recruitment and activation of this pathway have commonly been studied in reconstituted in vitro systems using previously defined recombinant signaling components. We have dissected the Interferon gamma (IFN gamma) signal transduction pathway in crude extracts from wild-type and STAT1-negative mutant cell Lines by real-time BIAcore analysis, size-exclusion (SE) chromatography and immune-detection. The data indicate that in detergent-free cell extracts: (1) the phospho-tyrosine (Y440P)-containing peptide motif of the IFN gamma-receptor ct-chain interacts directly with STAT1, or STAT1 complexes, and no other protein; (2) nonactivated STAT 1 is present in a higher molecular weight complex(es) and, at least for IFN gamma-primed cells, is available for recruitment to the activated IFN gamma-receptor from only a subset of such complexes; (3) activated STAT1 is released from the receptor as a monomer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previously we described activating mutations of h beta(c), the common signaling subunit of the receptors for the hematopoietic and inflammatory cytokines, GM-CSF, IL-3, and IL-5. The activated mutant, h beta(c)FI Delta, is able to confer growth factor-independent proliferation on the murine myeloid cell line FDC-P1, and on primary committed myeloid progenitors. We have used this activating mutation to study the effects of chronic cytokine receptor stimulation. Transgenic mice were produced carrying the h beta(c)FI Delta cDNA linked to the constitutive promoter derived from the phosphoglycerate kinase gene, PGK-1. Transgene expression was demonstrated in several tissues and functional activity of the mutant receptor was confirmed in hematopoietic tissues by the presence of granulocyte macrophage and macrophage colony-forming cells (CFU-GM and CFU-M) in the absence of added cytokines. All transgenic mice display a myeloproliferative disorder characterized by splenomegaly, erythrocytosis, and granulocytic and megakaryocytic hyperplasia. This disorder resembles the human disease polycythemia vera, suggesting that activating mutations in h beta(c) may play a role in the pathogenesis of this myeloproliferative disorder. In addition, these transgenic mice develop a sporadic, progressive neurological disease and display bilateral, symmetrical foci of necrosis in the white matter of brain stem associated with an accumulation of macrophages. Thus, chronic h beta(c) activation has the potential to contribute to pathological events in the central nervous system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background-Catecholamines hasten cardiac relaxation through beta-adrenergic receptors, presumably by phosphorylation of several proteins, but it is unknown which receptor subtypes are involved in human ventricle. We assessed the role of beta(1)- and beta(2)-adrenergic receptors in phosphorylating proteins implicated in ventricular relaxation. Methods and Results-Right ventricular trabeculae, obtained from freshly explanted hearts of patients with dilated cardiomyopathy (n=5) or ischemic cardiomyopathy (n=5), were paced at 60 bpm. After measurement of the contractile and relaxant effects of epinephrine (10 mu mol/L) or zinterol (10 mu mol/L), mediated through beta(2)-adrenergic receptors, and of norepinephrine (10 mu mol/L), mediated through beta(1)-adrenergic receptors, tissues were freeze clamped. We assessed phosphorylation of phospholamban, troponin I, and C-protein, as well as specific phosphorylation of phospholamban at serine 16 and threonine 17, Data did not differ between the 2 disease groups and were therefore pooled. Epinephrine, zinterol, and norepinephrine increased contractile force to approximately the same extent, hastened the onset of relaxation by 15+/-3%, 5+/-2%, and 20+/-3%, respectively, and reduced the time to half-relaxation by 26+/-3%, 21+/-3%, and 37+/-3%. These effects of epinephrine, zinterol, and norepinephrine were associated with phosphorylation (pmol phosphate/mg protein) of phospholamban 14+/-3, 12+/-4, and 12+/-3, troponin I 40+/-7, 33+/-7, and 31+/-6; and C-protein 7.2+/-1.9, 9.3 +/- 1.4, and 7.5 +/- 2.0. Phosphorylation of phospholamban occurred at both Ser16 and Thr17 residues through both beta(1)- and beta(2)-adrenergic receptors. Conclusions-Norepinephrine and epinephrine hasten human ventricular relaxation and promote phosphorylation of implicated proteins through both beta(1)- and beta(2)-adrenergic receptors, thereby potentially improving diastolic function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of conjugating cholesterol to either or both ends of a phosphorothioate (PS) oligonucleotide were analyzed in terms of cellular uptake and antisense efficacy. The oligo sequence was directed against the p75 nerve growth factor receptor (p75), and was tested in differentiated PC12 cells, which express high levels of this protein. The addition of a single cholesteryl group to the 5'-end significantly increased cellular uptake and improved p75 mRNA downregulation compared with the unmodified PS oligo, However, only a minor degree of downregulation of p75 protein was obtained with 5' cholesteryl oligos, Three different linkers was used to attach the 5' cholesteryl group but were found not to have any impact on efficacy. Addition of a single cholesteryl group to the 3'-end led to greater p75 mRNA downregulation (31%) and p75 protein downregulation (28%) than occurred with the 5' cholesteryl oligos. The biggest improvement in antisense efficacy, both at the mRNA and protein levels, was obtained from the conjugation of cholesterol to both ends of the oligo. One of the bis-cholesteryl oligos was nearly as effective as cycloheximide at decreasing synthesis of p75, The bis-cholesteryl oligos also displayed significant efficacy at 1 mu M, whereas the other oligos required 5 mu M to be effective. The enhanced efficacy of bis-cholesteryl oligos is likely to be due to a combination of enhanced cellular uptake and resistance to both 5' and 3' exonucleases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two synthetic analogues of murine epidermal. growth factor, [Abu6, 20] mEGF4-48 (where Abu denotes amino-butyric acid) and [G1, M3, K21, H40] mEGF1-48, have been investigated by NMR spectroscopy. [Abu6, 20] mEGF4-48 was designed to determine the contribution of the 6-20 disulfide bridge to the structure and function of mEGF The overall structure of this analogue was similar to that of native mEGF, indicating that the loss of the 6-20 disulfide bridge did not affect the global fold of the molecule. Significant structural differences were observed near the N-terminus, however, with the direction of the polypeptide chain between residues four and nine being altered such that these residues were now located on the opposite face of the main beta-sheet from their position in native mEGF Thermal denaturation experiments also showed that the structure of [Abu6, 20] mEGF4-48 was less stable than that of mEGF. Removal of this disulfide bridge resulted in a significant loss of both mitogenic activity in Balb/c 3T3 cells and receptor binding on A431 cells compared with native mEGF and mEGF4-48, implying that the structural changes in [Abu6, 20] mEGF4-48, although limited to the N-terminus, were sufficient to interfere with receptor binding. The loss of binding affinity probably arose mainly from steric interactions of the dislocated N-terminal region with part of the receptor binding surface of EGF [G1, M3, K21, H40] mEGF1-48 was also synthesized in order to compare the synthetic polypeptide with the corresponding product of recombinant expression. Its mitogenic activity in Balb/c 3T3 cells was similar to that of native mEGF and analysis of its H-1 chemical shifts suggested that its structure was also very similar to native.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zinc fingers (ZnFs) are generally regarded as DNA-binding motifs. However, a number of recent reports have implicated particular ZnFs in the mediation of protein-protein interactions. The N-terminal ZnF of GATA-1 (NF) is one such finger, having been shown to interact with a number of other proteins, including the recently discovered transcriptional co-factor FOG. Here we solve the three-dimensional structure of the NF in solution using multidimensional H-1/N-15 NMR spectroscopy, and we use H-1/N-15 spin relation measurements to investigate its backbone dynamics. The structure consists of two distorted beta-hairpins and a single alpha-helix, and is similar to that of the C-terminal ZnF of chicken GATA-1. Comparisons of the NF structure with those of other C-4-type zinc binding motifs, including hormone receptor and LIM domains, also reveal substantial structural homology. Finally, we use the structure to map the spatial locations of NF residues shown by mutagenesis to be essential for FOG binding, and demonstrate that these residues all lie on a single face of the NE Notably, this face is well removed from the putative DNA-binding face of the NE an observation which is suggestive of simultaneous roles for the NF; that is, stabilisation of GATA-1 DNA complexes and recruitment of FOG to GATA-1-controlled promoter regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Past studies have shown that apoptosis mediated by TNF-related apoptosis-inducing ligand (TRAIL) is regulated by the expression of two death receptors [TRAIL receptor 1 (TRAIL-RI) and TRAIL-R2] and two decoy receptors (TRAIL-R3 and TRAIL-R4) that inhibit apoptosis, In previous studies, me have shown that TRAIL but not other members of the tumor necrosis factor family induce apoptosis in approximately two-thirds of melanoma cell lines. Here, we examined whether the expression of TRAIL-R at the mRNA and protein level in a panel of 28 melanoma cell lines and melanocytes correlated with their sensitivity to TRAIL-induced apoptosis, We report that at least three factors appear to underlie the variability in TRAIL-induced apoptosis. (a) Pour of nine cell lines that were insensitive to TRAIL-induced apoptosis failed to express death receptors, and in two instances, lines were devoid of all TRAIL-Rs. Southern analysis suggested this was due to loss of the genes for the death receptors, (b) Despite the presence of mRNA for the TRAIL-R, some of the lines failed to express TRAIL-R protein on their surface. This was evident for TRAIL-RI and more so for the TRAIL decoy receptors TRAIL-R3 and -R4, Studies on permeabilized cells revealed that the receptors were located within the cytoplasm and redistribution from the cytoplasm may represent a posttranslational control mechanism. (c) Surface expression of TRAIL-RI and -R2 (but not TRAIL-R3 and -R4) showed an overall correlation with TRAIL-induced apoptosis. However, certain melanoma cell lines and clones were relatively resistant to TRAIL-induced apoptosis despite the absence of decoy receptors and moderate levels of TRAIL-RI and -R2 expression. This may indicate the presence of inhibitors within the cells, but resistance to apoptosis could not be correlated with expression of the caspase inhibitor FLICE-inhibitory protein. mRNA for another TRAIL receptor, osteoprotegerin, was expressed in 22 of the melanoma lines but not on melanocytes. Its role in induction of apoptosis remains to be studied. These results appear to have important implications for future clinical studies on TRAIL.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activation of the human complement system of plasma proteins during immunological host defense can result in overproduction of potent proinflammatory peptides such as the anaphylatoxin C5a. Excessive levels of C5a are associated with numerous immunoinflammatory diseases, but there is as yet no clinically available antagonist to regulate the effects of C5a. We now describe a series of small molecules derived from the C-terminus of C5a, some of which are the most potent low-molecular-weight C5a receptor antagonists reported to date for the human polymorphonuclear leukocyte (PMN) C5a receptor. H-1 NMR spectroscopy was used to determine solution structures for two cyclic antagonists and to indicate that antagonism is related to a turn conformation, which can be stabilized in cyclic molecules that are preorganized for receptor binding. While several cyclic derivatives were of similar antagonistic potency, the most potent antagonist was a hexapeptide-derived macrocycle AcF[OPdChaWR] with an IC50 = 20 nM against a maximal concentration of C5a (100 nM) on intact human PMNs. Such potent C5a antagonists may be useful probes to investigate the role of C5a in host defenses and to develop therapeutic agents for the treatment of many currently intractable inflammatory conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study. MRNA for the cytokines interleukin-2 (IL-2), IL-4, IL-10 tumour necrosis factor-alpha (TNF-alpha) and transforming growth factor beta-1 (TGF-beta-1) were investigated in oral lichen planus (OLP) lesions using in situ hybridization with S-35-labelled oligonucleotide probes on frozen tissue sections. In addition, the expression of interferon-gamma (IFN-gamma), IL-10 and IL-4 mRNAs was analysed in cultured lesional T lymphocytes from oral lichen planus by polymerase chain reaction. Cells expressing mRNA for IL-2, IL-4, IL-10, TNF-alpha and TGF-beta(1) were found in all the biopsies studied. Approximately 1-2% of the total number of infiltrating cells in the lesions were positive for each of the different cytokine mRNAs. Most biopsies contained basement membrane-oriented, mRNA-positive cells. In the cultured T-cell lines, message for IFN-gamma was detected in all the patients, IL-10 in all but one, and IL-4 in just one of the seven patients investigated. The results suggest that mRNA for both pro- and anti-inflammatory cytokines, i.e., mixed T-helper 1 (T(H)1) and T(H)2 cytokine profiles, are generated simultaneously by a limited number of cells in chronic lesions of OLP. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In mice there are two forms of the beta chain used in the IL3 receptor system, beta(com) and beta(IL3). beta(com) is used by the IL3, ILS and GM-CSF receptors whereas Pns is only used in the IL3 receptor. In this work an assay was developed to identify residues of beta(IL3) that restrict IL5 activity. It was found that such residues reside within the 2nd CRM of the molecule. Furthermore, when residues in the beta(IL3) B'-C' loop were replaced with beta(com) sequence a form of beta(IL3) was produced that was able to respond to IL5. This region is also responsible for IL3 binding to beta(IL3) in the absence of alpha chain. It is therefore an important structural motif of beta(com) and beta(IL3) responsible for both ligand interaction and specificity. (C) 1999 Federation of European Biochemical Societies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The amygdala is intimately involved in emotional behavior, and its role in the generation of anxiety and conditioned fear is well known. Benzodiazepines, which are commonly used for the relief of anxiety, are thought to act by enhancing the action of the inhibitory transmitter GABA. We have examined the properties of GABA-mediated inhibition in the amygdala. Whole-cell recordings were made from neurons in the lateral division of the central amygdala. Application of GABA evoked a current that reversed at the chloride equilibrium potential. Application of the GABA antagonists bicuculline or SR95531 inhibited the GABA-evoked current in a manner consistent with two binding sites. Stimulation of afferents to neurons in the central amygdala evoked an IPSC that was mediated by the release of GABA. The GABA(A) receptor antagonists bicuculline and picrotoxin failed to completely block the IPSC. The bicuculline-resistant IPSC was chloride-selective and was unaffected by GABA(B)-receptor antagonists. Furthermore, this current was insensitive to modulation by general anesthetics or barbiturates. In contrast to their actions at GABA(A) receptors, diazepam and flurazepam inhibited the bicuculline-resistant IPSC in a concentration-dependent manner. These effects were fully antagonized by the benzodiazepine site antagonist Ro15-1788. We conclude that a new type of ionotropic GABA receptor mediates fast inhibitory transmission in the central amygdala. This receptor may be a potential target for the development of new therapeutic strategies for anxiety disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1 We identified putative beta(4)-adrenoceptors by radioligand binding, measured increases in ventricular contractile force by (-)-CGP 12177 and (+/-)-cyanopindolol and demonstrated increased Ca2+ transients by (-)-CGP 12177 in rat cardiomyocytes. 2 (-)-[H-3]-CGP 12177 labelled 13-22 fmol mg(-1) protein ventricular beta(1), beta(2)-adrenoceptors (pK(D) similar to 9.0) and 50-90 fmol mg(-1) protein putative beta(4)-adrenoceptors (pK(D) similar to 7.3). The affinity values (PKi) for (beta(1),beta(2)-) and putative beta(4)-adrenoceptors, estimated from binding inhibition, were (-)-propranolol 8.4, 5.7; (-)-bupranolol 9.7, 5.8; (+/-)-cyanopindolol 10.0,7.4. 3 In left ventricular papillary muscle, in the presence of 30 mu M 3-isobutyl-1-methylxanthine, (-)CGP 12177 and (+/-)-cyanopindolol caused positive inotropic effects, (pEC(50) (-)-CGP 12177, 7.6; (+/-)-cyanopindolol, 7.0) which were antagonized by (-)-bupranolol (pK(B) 6.7-7.0) and (-)-CGP 20712A (pK(B) 6.3-6.6). The cardiostimulant effects of(-)-CGP 12177 in papillary muscle, left and right atrium were antagonized by (+/-)-cyanopindolol (pK(i), 7.0-7.4). 4 (-)-CGP 12177 (1 mu M) in the presence of 200 nM (-)-propranolol increased Ca2+ transient amplitude by 56% in atrial myocytes, but only caused a marginal increase in ventricular myocytes. In the presence of 1 mu M 3-isobutyl-1-methylxanthine and 200 nM (-)-propranolol, 1 mu M (-)-CGP 12177 caused a 73% increase in Ca2+ transient amplitude in ventricular myocytes. (-)-CGP 12177 elicited arrhythmic transients in some atrial and ventricular myocytes. 5 Probably by preventing cyclic AMP hydrolysis, 3-isobutyl-1-methylxanthine facilitates the inotropic function of ventricular putative beta(4)-adrenoceptors. suggesting coupling to G(s) protein-adenylyl cyclase. The receptor-mediated increases in contractile force are related to increases of Ca2+ in atrial and ventricular myocytes. The agreement of binding affinities of agonists with cardiostimulant potencies is consistent with mediation through putative beta(4)-adrenoceptors labelled with (-)-[H-3]-CGP 12177.