996 resultados para Coordinate subtangent


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The relationship of the anharmonic force constants in curvilinear internal coordinates to the observed vibration-rotation spectrum of a molecule is reviewed. A simplified method of setting up the required non-linear coordinate transformations is described: this makes use of an / tensor, which is a straightforward generalization of the / matrix used in the customary description of harmonic force constant calculations. General formulae for the / tensor elements, in terms of the familiar L matrix elements, are presented. The use of non-linear symmetry coordinates and redundancies are described. Sample calculations on the water and ammonia molecules are reported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

General expressions for the force constants and dipole‐moment derivatives of molecules are derived, and the problems arising in their practical application are reviewed. Great emphasis is placed on the use of the Hartree–Fock function as an approximate wavefunction, and a number of its properties are discussed and re‐emphasised. The main content of this paper is the development of a perturbed Hartree–Fock theory that makes possible the direct calculation of force constants and dipole‐moment derivatives from SCF–MO wavefunctions. Essentially the theory yields ∂ϕi / ∂RJα, the derivative of an MO with respect to a nuclear coordinate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Normal coordinate calculations of XH4 and XH3 molecules are reviewed and discussed. It is shown that for most of these molecules the true values of the force constants in the most General Harmonic Force Field can be uniquely determined only by making use of vibration-rotation interaction constants. It is emphasized that without these extra data the GFF is not determined. The results are compared with various model force fields for these molecules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rotational structure has been resolved and analyzed in two of the infrared‐active perpendicular bands of C2H4 vapor: the Type b fundamental band, ν10, at 826 cm—1, and the Type c fundamental band, ν7, at 949 cm—1. Many of the individual PP and RR branch lines have been observed. The analysis has been confined to values of the quantum number K≥3, for which energy levels ethylene shows no detectable deviations from a symmetric‐top rotational structure. The analysis reveals a Coriolis interaction between ν7 and ν10, and between ν4 and ν10, and values of the Coriolis constants ζ7,10z and ζ4,10y are obtained; these are related to normal coordinate calculations for the appropriate symmetry species, and force constants are derived to fit the observed zeta constants. The band center of ν10 has been revised from the original figure of 810 cm—1 to the new value, 826 cm—1, and the inactive frequency ν4 is estimated to lie at 1023±3 cm—1, in good agreement with the previous estimate of 1027 cm—1. The change in the value of ν10 leads to a suggested change in the value of the Raman‐active fundamental ν6 from 1236 to 1222 cm—1. New combination bands have been observed at 2174 cm—1, assigned as ν3+ν10; and at 2252 cm—1, assigned as ν4+ν6; also rotational structure has been resolved and analyzed in the ν6+ν10 band at 2048 cm—1. The new data obtained for the C2H4 molecule are summarized in Table XII, with all of the other data presently available on the vibrational and rotational constants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Absolute intensity measurements have been made on the fundamental vibrations of ethylene and four of its deuteroisotopes. The bands were pressure broadened with nitrogen at 50 atmos, and the intensities were determined by the method of Wilson and Wells except that the observed optical density was integrated against logv rather than v. Normal coordinates have been calculated, and the intensities have been interpreted in terms of quantities (∂p/∂Si) giving the change in dipole moment with respect to each internal symmetry coordinate. Data from the different isotopic species have been used to eliminate ambiguities in the interpretation. Effective bond moments are calculated for each symmetry coordinate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is now possible to calculate the nine-dimensional rovibrational wavefunctions of sequentially bonded four-atom molecules variationally without dynamical approximation. In the case of HCCH, the simplest such molecule, many hundreds of rovibrational (J = 0, 1, 2) levels can be converged to better than 1.5 cm −1. Variational calculations of this kind are used here systematically to refine the well-known quartic valence-coordinate forcefleld of Strey and Mills [J.Mol. Spectrosc.59, 103-115 (1976)] against experimental term values up to three C-H stretch quanta for the principal and two deuterated isotopomers, yielding a new surface that reproduces the energies of all the known Σ, Π, and Δ states of these species up to the energy of two C-H stretch quanta with an rms error of 3 cm−1 . The refined forcefield is used to study the resonances associated with the accidental degeneracies (ν2 + ν4 + ν5, ν3) and (ν2 + 2ν5, ν1) in the principal isotopomer, leading to a clarification of the assignment of she experimentally detected states in the 2ν3 and 3ν3, polyads, and to the finding that vibrational Coriolis (kinetic energy) terms, rather than quartic anharmonicities in the potential, are the primary cause of the resonant interactions. Using a new cubic ab initio electric dipole field to calculate IR absorption coefficients, 24 undetected Σ and Π states of 1H12C12C1H and 5 undetected Σ states of D12C12CD are identified as candidates for experimental study, and their calculated energies and assignments are given.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microwave spectra of oxetane (trimethylene oxide) and its three symmetrically deuterated isotopic species have been observed on a Hewlett-Packard microwave spectrometer from 26.5 to 40 GHz. For the parent species, the β-d2 and the αα′-d4 species, about 300 lines have been assigned for each molecule, and for the d6 species more than 600 lines have been assigned. The assignments range from v = 0 to v = 5 in the puckering vibration; although they are mostly Q transitions, either 3 or 4 R transitions have been observed for each vibrational state. The spectra have been interpreted using an effective rotational hamiltonian for each vibrational state, including five quartic distortion constants according to Watson's formulation, and a variable number of sextic distortion constants; in general, the lines are fitted to about ± 10 kHz. The distortion constants show an anomalous zig-zag dependence on the puckering vibrational quantum number, similar to that first observed for the rotational constants by Gwinn and coworkers. This is interpreted according to a simple modification of the standard theory of centrifugal distortion, involving the double minimum potential function in the puckering coordinate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The brace notation, introduced by Allen and Csaszar (1993, J. chem. Phys., 98, 2983), provides a simple and compact way to deal with derivatives of arbitrary non-tensorial quantities. One of its main advantages is that it builds the permutational symmetry of the derivatives directly into the formalism. The brace notation is applied to formulate the general nth-order Cartesian derivatives of internal coordinates, and to provide closed forms for general, nth-order transformation equations of anharmonic force fields, expressed as Taylor series, from internal to Cartesian or normal coordinate spaces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intracavity photoacoustic overtone spectrum of monofluoroacetylene, HCCF, has been recorded in the wave number region 10 750–14 500 cm−1 with a titanium:sapphire ring laser. The spectrum contains many dense vibration–rotation band systems which can be resolved with Doppler limited resolution. Altogether 58 individual overtone bands have been analyzed rotationally. Many of the observed bands show perturbations of which some have been attributed to anharmonic resonance interactions. A Fermi resonance model based on conventional rectilinear normal coordinate theory has been used to assign vibrationally bands from this work and from earlier studies. Many of the observed vibrational term values and rotational constants can be reproduced well with this model. The results show the importance of the Fermi resonance interactions at the high overtone excitations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The absorption intensities of the two infra-red active vibrations in methane have been obtained from a perturbation calculation on the equilibrium wave functions derived in the preceding paper. The perturbation field is the change in the potential field due to the nuclei which results from moving the nuclei in the vibrational coordinate concerned, and a simplified form of second order perturbation theory, developed by Pople and Schofield, is used for the calculation. The main approximation involved is the neglect of f and higher harmonics in the spherical harmonic expansion of the nuclear field. The resulting dipole moment derivatives are approximately three times larger than the experimental values, but they show qualitative features and sign relationships which are significant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The theory of rotational-pucker-vibrational transitions in the vibrational spectrum of cyclobutane is reviewed. Puckering sideband structure on the 1453 cm-1v14 infra-red fundamental of C4H8 has been observed and analysed, in terms of two slightly different puckering potential functions for the ground and the excited vibrational states. The results have been fitted to quartic-quadratic potential functions in the puckering coordinate, with a barrier to inversion of 503 cm-1 (1•44 kcal mole-1 = 6•02 kJ mole-1) in the ground state and 491 cm-1 in the excited state ν14 = 1. For reasonable assumptions about the reduced mass, the equilibrium dihedral angle of the C4 ring is determined to be about 35°, in agreement with previous estimates. Ueda and Shimanouchi's observations on the 2878 cm-1 C4H8 band have been re-analysed, and puckering sidebands have also been observed and analysed for the 1083 cm-1v14 infra-red fundamental of C4D8. Pure puckering transitions have been observed in the Raman spectrum of C4H8 vapour. All of these observations are shown to be consistent with the same ground state puckering potential function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microwave spectrum for thietan-2,2,4,4-d4 is analysed in six of its lowest puckering states and up to J = 25. The close lying pairs of states of vp = 0/1, 2/3 and 4/5 are treated with a vibration-rotation hamiltonian which includes an off-diagonal coupling term in vp. Additional corrections to this coupling term in higher powers of the angular momentum operator are derived and their importance for improving the fit of calculated to observed data is tested. The variation of the centrifugal distortion constants with vp follows the model of Creswell and Mills (1974, J. molec. Spectrosc., 52, 392). A value is determined for the derivative with respect to the puckering coordinate of the ac-component of the inverse moment of inertia tensor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ab initio calculations of the energy have been made at approximately 150 points on the two lowest singlet A' potential energy surfaces of the water molecule, 1A' and 1A', covering structures having D∞h, C∞v, C2v and Cs symmetries. The object was to obtain an ab initio surface of uniform accuracy over the whole three-dimensional coordinate space. Molecular orbitals were constructed from a double zeta plus Rydberg basis, and correlation was introduced by single and double excitations from multiconfiguration states which gave the correct dissociation behaviour. A two-valued analytical potential function has been constructed to fit these ab initio energy calculations. The adiabatic energies are given in our analytical function as the eigenvalues of a 2 2 matrix, whose diagonal elements define two diabatic surfaces. The off-diagonal element goes to zero for those configurations corresponding to surface intersections, so that our adiabatic surface exhibits the correct Σ/II conical intersections for linear configurations, and singlet/triplet intersections of the O + H2 dissociation fragments. The agreement between our analytical surface and experiment has been improved by using empirical diatomic potential curves in place of those derived from ab initio calculations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The infrared spectrum of carbon suboxide has been recorded with a resolution of 0•01cm-1 from 400 to 700 cm-1. The region from 530 to 570 cm-1 shows intense absorption due to the v6(Πu) band system, of which the fundamental band only has been assigned and analysed, giving v6=540•221 cm-1. The region 590 to 660 cm-1 shows weaker absorption due to the v5(Πg) band system appearing in combination with odd quanta of the v7(Πu) fundamental at 18 cm-1. The v5 + v7 band and several hot bands have been assigned and analysed, and the effective v7 bending potential in the v5 state has been deduced. This potential shows a splitting as the large amplitude bending coordinate q7 is displaced due to interaction between v5 and v7 analogous to the Renner-Teller effect in electronic spectroscopy. This splitting is about 4 cm-1 for the classical turning points in q7 and the mean q7 bending potential is closely similar to that in the ground state.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Formulas are derived for the quartic anharmonic resonance coefficients observed to be important between C–H stretching and the combination of one quantum of C≡C stretching and two quanta of H–C≡C bending in a number of acetylene molecules. Examples of this resonance are ν3 with ν2+ν4+ν5 in 12C2H2, ν1 with ν2+2ν5 in 13C2H2, and ν1 with ν2+2ν4 in monofluoroacetylene and monochloroacetylene. The coefficients characterizing the resonances in these examples, which we denote K3,245, K1,255, and K1,244, arise from cubic and quartic terms in the anharmonic force field, in the normal coordinate representation, through second order and first order perturbation treatments respectively, where the second order resonances are calculated by a Van Vleck resonance formalism. The experimentally determined values of these coefficients are compared with values calculated from model anharmonic force fields.