992 resultados para Cooperative risk
Resumo:
In school environments, children are constantly exposed to mixtures of airborne substances, derived from a variety of sources, both in the classroom and in the school surroundings. It is important to evaluate the hazardous properties of these mixtures, in order to conduct risk assessments of their impact on chil¬dren’s health. Within this context, through the application of a Maximum Cumulative Ratio approach, this study aimed to explore whether health risks due to indoor air mixtures are driven by a single substance or are due to cumulative exposure to various substances. This methodology requires knowledge of the concentration of substances in the air mixture, together with a health related weighting factor (i.e. reference concentration or lowest concentration of interest), which is necessary to calculate the Hazard Index. Maximum cumulative ratio and Hazard Index values were then used to categorise the mixtures into four groups, based on their hazard potential and therefore, appropriate risk management strategies. Air samples were collected from classrooms in 25 primary schools in Brisbane, Australia. Analysis was conducted based on the measured concentration of these substances in about 300 air samples. The results showed that in 92% of the schools, indoor air mixtures belonged to the ‘low concern’ group and therefore, they did not require any further assessment. In the remaining schools, toxicity was mainly governed by a single substance, with a very small number of schools having a multiple substance mix which required a combined risk assessment. The proposed approach enables the identification of such schools and thus, aides in the efficient health risk management of pollution emissions and air quality in the school environment.
Resumo:
Airborne particles, including both ultrafine and supermicrometric particles, contain various carcinogens. Exposure and risk-assessment studies regularly use particle mass concentration as dosimetry parameter, therefore neglecting the potential impact of ultrafine particles due to their negligible mass compared to supermicrometric particles. The main purpose of this study was the characterization of lung cancer risk due to exposure to polycyclic aromatic hydrocarbons and some heavy metals associated with particle inhalation by Italian non-smoking people. A risk-assessment scheme, modified from an existing risk model, was applied to estimate the cancer risk contribution from both ultrafine and supermicrometric particles. Exposure assessment was carried out on the basis of particle number distributions measured in 25 smoke-free microenvironments in Italy. The predicted lung cancer risk was then compared to the cancer incidence rate in Italy to assess the number of lung cancer cases attributed to airborne particle inhalation, which represents one of the main causes of lung cancer, apart from smoking. Ultrafine particles are associated with a much higher risk than supermicrometric particles, and the modified risk-assessment scheme provided a more accurate estimate than the conventional scheme. Great attention has to be paid to indoor microenvironments and, in particular, to cooking and eating times, which represent the major contributors to lung cancer incidence in the Italian population. The modified risk assessment scheme can serve as a tool for assessing environmental quality, as well as setting up exposure standards for particulate matter.
Resumo:
Cooperative relay communication in a fading channel environment under the orthogonal amplify-and-forward (OAF), nonorthogonal and orthogonal selection decode-and-forward (NSDF and OSDF) protocols is considered here. The diversity-multiplexing gain tradeoff (DMT) of the three protocols is determined and DMT-optimal distributed space-time (ST) code constructions are provided. The codes constructed are sphere decodable and in some instances incur minimum possible delay. Included in our results is the perhaps surprising finding that the orthogonal and the nonorthogonal amplify-and-forward (NAF) protocols have identical DMT when the time durations of the broadcast and cooperative phases are optimally chosen to suit the respective protocol. Moreover our code construction for the OAF protocol incurs less delay. Two variants of the NSDF protocol are considered: fixed-NSDF and variable-NSDF protocol. In the variable-NSDF protocol, the fraction of time occupied by the broadcast phase is allowed to vary with multiplexing gain. The variable-NSDF protocol is shown to improve on the DMT of the best previously known static protocol when the number of relays is greater than two. Also included is a DMT optimal code construction for the NAF protocol.
Resumo:
The complexity, variability and vastness of the northern Australian rangelands make it difficult to assess the risks associated with climate change. In this paper we present a methodology to help industry and primary producers assess risks associated with climate change and to assess the effectiveness of adaptation options in managing those risks. Our assessment involved three steps. Initially, the impacts and adaptation responses were documented in matrices by ‘experts’ (rangeland and climate scientists). Then, a modified risk management framework was used to develop risk management matrices that identified important impacts, areas of greatest vulnerability (combination of potential impact and adaptive capacity) and priority areas for action at the industry level. The process was easy to implement and useful for arranging and analysing large amounts of information (both complex and interacting). Lastly, regional extension officers (after minimal ‘climate literacy’ training) could build on existing knowledge provided here and implement the risk management process in workshops with rangeland land managers. Their participation is likely to identify relevant and robust adaptive responses that are most likely to be included in regional and property management decisions. The process developed here for the grazing industry could be modified and used in other industries and sectors. By 2030, some areas of northern Australia will experience more droughts and lower summer rainfall. This poses a serious threat to the rangelands. Although the impacts and adaptive responses will vary between ecological and geographic systems, climate change is expected to have noticeable detrimental effects: reduced pasture growth and surface water availability; increased competition from woody vegetation; decreased production per head (beef and wool) and gross margin; and adverse impacts on biodiversity. Further research and development is needed to identify the most vulnerable regions, and to inform policy in time to facilitate transitional change and enable land managers to implement those changes.
Resumo:
The problem of learning correct decision rules to minimize the probability of misclassification is a long-standing problem of supervised learning in pattern recognition. The problem of learning such optimal discriminant functions is considered for the class of problems where the statistical properties of the pattern classes are completely unknown. The problem is posed as a game with common payoff played by a team of mutually cooperating learning automata. This essentially results in a probabilistic search through the space of classifiers. The approach is inherently capable of learning discriminant functions that are nonlinear in their parameters also. A learning algorithm is presented for the team and convergence is established. It is proved that the team can obtain the optimal classifier to an arbitrary approximation. Simulation results with a few examples are presented where the team learns the optimal classifier.
Resumo:
While the method using specialist herbivores in managing invasive plants (classical biological control) is regarded as relatively safe and cost-effective in comparison to other methods of management, the rarity of strict monophagy among insect herbivores illustrates that, like any management option, biological control is not risk-free. The challenge for classical biological control is therefore to predict risks and benefits a priori. In this study we develop a simulation model that may aid in this process. We use this model to predict the risks and benefits of introducing the chrysomelid beetle Charidotis auroguttata to manage the invasive liana Macfadyena unguis-cati in Australia. Preliminary host-specificity testing of this herbivore indicated that there was limited feeding on a non-target plant, although the non-target was only able to sustain some transitions of the life cycle of the herbivore. The model includes herbivore, target and non-target life history and incorporates spillover dynamics of populations of this herbivore from the target to the non-target under a variety of scenarios. Data from studies of this herbivore in the native range and under quarantine were used to parameterize the model and predict the relative risks and benefits of this herbivore when the target and non-target plants co-occur. Key model outputs include population dynamics on target (apparent benefit) and non-target (apparent risk) and fitness consequences to the target (actual benefit) and non-target plant (actual risk) of herbivore damage. The model predicted that risk to the non-target became unacceptable (i.e. significant negative effects on fitness) when the ratio of target to non-target in a given patch ranged from 1:1 to 3:2. By comparing the current known distribution of the non-target and the predicted distribution of the target we were able to identify regions in Australia where the agent may be pose an unacceptable risk. By considering risk and benefit simultaneously, we highlight how such a simulation modelling approach can assist scientists and regulators in making more objective decisions a priori, on the value of releasing specialist herbivores as biological control agents.
Resumo:
Wild canids (wild dogs and European red foxes) cause substantial losses to Australian livestock industries and environmental values. Both species are actively managed as pests to livestock production. Contemporaneously, the dingo proportion of the wild dog population, being considered native, is protected in areas designated for wildlife conservation. Wild dogs particularly affect sheep and goat production because of the behavioural responses of domestic sheep and goats to attack, and the flexible hunting tactics of wild dogs. Predation of calves, although less common, is now more economically important because of recent changes in commodity prices. Although sometimes affecting lambing and kidding rates, foxes cause fewer problems to livestock producers but have substantial impacts on environmental values, affecting the survival of small to medium-sized native fauna and affecting plant biodiversity by spreading weeds. Canid management in Australia relies heavily on the use of compound 1080-poisoned baits that can be applied aerially or by ground. Exclusion fencing, trapping, shooting, livestock-guarding animals and predator calling with shooting are also used. The new Invasive Animals Cooperative Research Centre has 40 partners representing private and public land managers, universities, and training, research and development organisations. One of the major objectives of the new IACRC is to apply a strategic approach in order to reduce the impacts of wild canids on agricultural and environmental values in Australia by 10%. In this paper, the impacts, ecology and management of wild canids in Australia are briefly reviewed and the first cooperative projects that will address IACRC objectives for improving wild dog management are outlined.
Resumo:
The social-emotional issues some students experience can place them at risk of school failure. Traditional methods of support can be ineffective or not sustainable and new alternative approaches need to be attempted to support social-emotional competency, school engagement and success for students at risk. This paper discusses preliminary outcomes of an equine facilitated learning (EFL) programme specifically designed to focus on using horses to improve the resilience and social-emotional competency in students perceived as ‘at risk’ of school failure. This qualitative exploratory study used interviews and observations over a six month period to listen to the voices of the students themselves about their experiences of EFL. Initial findings from the pilot study suggest that EFL programmes can be a novel and motivating way to promote resilience training and social-emotional development of students at risk of failure and, in turn, improve their level of engagement and connection with school environments.
Resumo:
Background/Aim: To investigate the role of eccentric knee flexor strength, between-limb imbalance and biceps femoris long head (BFlh) fascicle length on the risk of a future hamstring strain injury (HSI). Methods: Elite soccer players (n=152) from eight different teams participated. Eccentric knee flexor strength during the Nordic hamstring exercise and BFlh fascicle length were assessed at the beginning of pre-season. The occurrences of a HSI following this were recorded by the team medical staff. Relative risk (RR) was determined for univariate data, and logistic regression was employed for multivariate data. Results: Twenty-seven new HSIs were reported. Eccentric knee flexor strength below 337N (RR = 4.4; 95% CI = 1.1 to 17.5) and BFlh fascicles shorter than 10.56cm (RR = 4.1; 95% CI=1.9 to 8.7) significantly increased the risk of a subsequent HSI. Multivariate logistic regression revealed significant effects when combinations of age, previous history of HSI, eccentric knee flexor strength and BFlh fascicle length were explored. From these analyses the likelihood of a future HSI in older athletes or those with a previous HSI history was reduced if high levels of eccentric knee flexor strength and longer BFlh fascicles were present. Conclusions: The presence of short BFlh fascicles and low levels of eccentric strength in elite soccer players increase the risk of a future HSI. The greater risk of a future HSI in older players or those with a previous HSI is reduced when they possess longer BFlh fascicles and high levels of eccentric strength.
Resumo:
Objective: To examine the association between preoperative quality of life (QoL) and postoperative adverse events in women treated for endometrial cancer. Methods: 760 women with apparent Stage I endometrial cancer were randomised into a clinical trial evaluating laparoscopic versus open surgery. This analysis includes women with preoperative QoL measurements, from the Functional Assessment of Cancer Therapy- General (FACT-G) questionnaire, and who were followed up for at least 6 weeks after surgery (n=684). The outcomes for this study were defined as (1) the occurrence of moderate to severe AEs adverse events within 6 months (Common Toxicology Criteria (CTC) grade ≥3); and (2) any Serious Adverse Event (SAE). The association between preoperative QoL and the occurrence of AE was examined, after controlling for baseline comorbidity and other factors. Results: After adjusting for other factors, odds of occurrence of AE of CTC grade ≥3 were significantly increased with each unit decrease in baseline FACT-G score (OR=1.02, 95% CI 1.00-1.03, p=0.030), which was driven by physical well-being (PWB) (OR=1.09, 95% CI 1.04-1.13, p=0.0002) and functional well-being subscales (FWB) (OR=1.04, 95% CI 1.00-1.07, p=0.035). Similarly, odds of SAE occurrence were significantly increased with each unit decrease in baseline FACT-G score (OR=1.02, 95% CI 1.01-1.04, p=0.011), baseline PWB (OR=1.11, 95% CI 1.06-1.16, p<0.0001) or baseline FWB subscales (OR=1.05, 95% CI 1.01-1.10, p=0.0077). Conclusion: Women with early endometrial cancer presenting with lower QoL prior to surgery are at higher risk of developing a serious adverse event following surgery. Funding: Cancer Council Queensland, Cancer Council New South Wales, Cancer Council Victoria, Cancer Council, Western Australia; NHMRC project grant 456110; Cancer Australia project grant 631523; The Women and Infants Research Foundation, Western Australia; Royal Brisbane and Women’s Hospital Foundation; Wesley Research Institute; Gallipoli Research Foundation; Gynetech; TYCO Healthcare, Australia; Johnson and Johnson Medical, Australia; Hunter New England Centre for Gynaecological Cancer; Genesis Oncology Trust; and Smart Health Research Grant QLD Health.
Resumo:
This publication, which is the final report to the Torres Strait Cooperative Research Centre, provides an overview of all the research that was conducted as part of the Torres Strait CRC Task 1.5 - Towards Ecologically Sustainable Management of the Torres Strait Prawn Fishery The objectives of the task were: To develop cost-effective protocols to monitor and quantify the bycatch and environmental impacts of commercial prawn trawling. To monitor the status of target species using both fishery dependent and fishery independent data. To develop biological reference points for target species and undertake management strategy evaluation, in particular a risk assessment of fishing at various levels of fishing mortality. This report focuses on the second component of objective 1 and details a comparative analysis of bycatch samples collected from areas of the Torres Strait that were both closed and open to prawn trawl fishing. The report also reviews the research conducted in relation to objectives 2 and 3 which are detailed in a separate report, Stock Assessment of the Torres Strait Tiger Prawn Fishery (Penaeus esculentus).
Resumo:
Because of the variable and changing environment, advisors and farmers are seeking systems that provide risk management support at a number of time scales. The Agricultural Production Systems Research Unit, Toowoomba, Australia has developed a suite of tools to assist advisors and farmers to better manage risk in cropping. These tools range from simple rainfall analysis tools (Rainman, HowWet, HowOften) through crop simulation tools (WhopperCropper and YieldProphet) to the most complex, APSFarm, a whole-farm analysis tool. Most are derivatives of the APSIM crop model. These tools encompass a range of complexity and potential benefit to both the farming community and for government policy. This paper describes, the development and usage of two specific products; WhopperCropper and APSFarm. WhopperCropper facilitates simulation-aided discussion of growers' exposure to risk when comparing alternative crop input options. The user can readily generate 'what-if' scenarios that separate the major influences whilst holding other factors constant. Interactions of the major inputs can also be tested. A manager can examine the effects of input levels (and Southern Oscillation Index phase) to broadly determine input levels that match their attitude to risk. APSFarm has been used to demonstrate that management changes can have different effects in short and long time periods. It can be used to test local advisors and farmers' knowledge and experience of their desired rotation system. This study has shown that crop type has a larger influence than more conservative minimum soil water triggers in the long term. However, in short term dry periods, minimum soil water triggers and maximum area of the various crops can give significant financial gains.
Resumo:
We address risk minimizing option pricing in a semi-Markov modulated market where the floating interest rate depends on a finite state semi-Markov process. The growth rate and the volatility of the stock also depend on the semi-Markov process. Using the Föllmer–Schweizer decomposition we find the locally risk minimizing price for European options and the corresponding hedging strategy. We develop suitable numerical methods for computing option prices.
Resumo:
Aim: Birds play a major role in the dispersal of seeds of many fleshy-fruited invasive plants. The fruits that birds choose to consume are influenced by fruit traits. However, little is known of how the traits of invasive plant fruits contribute to invasiveness or to their use by frugivores. We aim to gain a greater understanding of these relationships to improve invasive plant management. Location: South-east Queensland, Australia. Methods: We measure a variety of fruit morphology, pulp nutrient and phenology traits of a suite of bird-dispersed alien plants. Frugivore richness of these aliens was derived from the literature. Using regressions and multivariate methods, we investigate relationships between fruit traits, frugivore richness and invasiveness. Results: Plant invasiveness was negatively correlated to fruit size, and all highly invasive species had quite similar fruit morphology [smaller fruits, seeds of intermediate size and few (<10) seeds per fruit]. Lower pulp water was the only pulp nutrient trait associated with invasiveness. There were strong positive relationships between the diversity of bird frugivores and plant invasiveness, and in the diversity of bird frugivores in the study region and another part of the plants' alien range. Main conclusions: Our results suggest that weed risk assessments (WRA) and predictions of invasive success for bird-dispersed plants can be improved. Scoring criteria for WRA regarding fruit size would need to be system-specific, depending on the fruit-processing capabilities of local frugivores. Frugivore richness could be quantified in the plant's natural range, its invasive range elsewhere, or predictions made based on functionally similar fruits.
Resumo:
This paper provides guidance on how to address the 49 questions of the Australian Weed Risk Assessment (WRA) system. The WRA was developed in Australia in 1999, and has since been widely adapted for different regions. As interest in implementation and results comparison has increased, the issue of consistency in answering and scoring the questions has become important. As a result, this guidance was developed during the 2007 International WRA Workshop. Suggestions on search methods, data sources and examples are also provided.