982 resultados para Conserved karyotype
Resumo:
Adenylosuccinate lyase (ASL), an enzyme involved in purine biosynthesis, has been recognized as a drug target against microbial infections. In the present study, ASL from Mycobacteriumsmegmatis (MsASL) and Mycobacteriumtuberculosis (MtbASL) were cloned, purified and crystallized. The X-ray crystal structure of MsASL was determined at a resolution of 2.16 angstrom. It is the first report of an apo-ASL structure with a partially ordered active site C3 loop. Diffracting crystals of MtbASL could not be obtained and a model for its structure was derived using MsASL as a template. These structures suggest that His149 and either Lys285 or Ser279 of MsASL are the residues most likely to function as the catalytic acid and base, respectively. Most of the active site residues were found to be conserved, with the exception of Ser148 and Gly319 of MsASL. Ser148 is structurally equivalent to a threonine in most other ASLs. Gly319 is replaced by an arginine residue in most ASLs. The two enzymes were catalytically much less active compared to ASLs from other organisms. Arg319Gly substitution and reduced flexibility of the C3 loop might account for the low catalytic activity of mycobacterial ASLs. The low activity is consistent with the slow growth rate of Mycobacteria and their high GC containing genomes, as well as their dependence on other salvage pathways for the supply of purine nucleotides. Structured digital abstract andby()
Resumo:
The host-pathogen interactions in Mycobacterium tuberculosis infection are significantly influenced by redox stimuli and alterations in the levels of secreted antigens. The extracyto-plasmic function (ECF) sigma factor sigma(K) governs the transcription of the serodominant antigens MPT70 and MPT83. The cellular levels of sigma(K) are regulated by the membrane-associated anti-sigma(K) (RskA) that localizes sigma(K) in an inactive complex. The crystal structure of M. tuberculosis sigma(K) in complex with the cytosolic domain of RskA (RskAcyto) revealed a disulfide bridge in the -35 promoter-interaction region of sigma(K). Biochemical experiments reveal that the redox potential of the disulfide-forming cysteines in sigma(K) is consistent with its role as a sensor. The disulfide bond in sigma(K) influences the stability of the sigma(K)-RskA(cyto) complex but does not interfere with sigma(K)-promoter DNA interactions. It is noted that these disulfide-forming cysteines are conserved across homologues, suggesting that this could be a general mechanism for redox-sensitive transcription regulation.
Resumo:
Human La protein is known to be an essential host factor for translation and replication of hepatitis C virus (HCV) RNA. Previously, we have demonstrated that residues responsible for interaction of human La protein with the HCV internal ribosomal entry site (IRES) around the initiator AUG within stem-loop IV form a beta-turn in the RNA recognition motif (RRM) structure. In this study, sequence alignment and mutagenesis suggest that the HCV RNA-interacting beta-turn is conserved only in humans and chimpanzees, the species primarily known to be infected by HCV. A 7-mer peptide corresponding to the HCV RNA-interacting region of human La inhibits HCV translation, whereas another peptide corresponding to the mouse La sequence was unable to do so. Furthermore, IRES-mediated translation was found to be significantly high in the presence of recombinant human La protein in vitro in rabbit reticulocyte lysate. We observed enhanced replication with HCV subgenomic and full-length replicons upon overexpression of either human La protein or a chimeric mouse La protein harboring a human La beta-turn sequence in mouse cells. Taken together, our results raise the possibility of creating an immunocompetent HCV mouse model using human-specific cell entry factors and a humanized form of La protein.
Resumo:
Background: Heat shock factor binding protein (HSBP) was originally discovered in a yeast two-hybrid screen as an interacting partner of heat shock factor (HSF). It appears to be conserved in all eukaryotes studied so far, with yeast being the only exception. Cell biological analysis of HSBP in mammals suggests its role as a negative regulator of heat shock response as it appears to interact with HSF only during the recovery phase following exposure to heat stress. While the identification of HSF in the malaria parasite is still eluding biologists, this study for the first time, reports the presence of a homologue of HSBP in Plasmodium falciparum. Methods: PfHSBP was cloned and purified as his-tag fusion protein. CD (Circular dichroism) spectroscopy was performed to predict the secondary structure. Immunoblots and immunofluorescence approaches were used to study expression and localization of HSBP in P. falciparum. Cellular fractionation was performed to examine subcellular distribution of PfHSBP. Immunoprecipitation was carried out to identify HSBP interacting partner in P. falciparum. Results: PfHSBP is a conserved protein with a high helical content and has a propensity to form homo-oligomers. PfHSBP was cloned, expressed and purified. The in vivo protein expression profile shows maximal expression in trophozoites. The protein was found to exist in oligomeric form as trimer and hexamer. PfHSBP is predominantly localized in the parasite cytosol, however, upon heat shock, it translocates to the nucleus. This study also reports the interaction of PfHSBP with PfHSP70-1 in the cytoplasm of the parasite. Conclusions: This study emphasizes the structural and biochemical conservation of PfHSBP with its mammalian counterpart and highlights its potential role in regulation of heat shock response in the malaria parasite. Analysis of HSBP may be an important step towards identification of the transcription factor regulating the heat shock response in P. falciparum.
Resumo:
In Mycobacterium tuberculosis Rv1027c-Rv1028c genes are predicted to encode KdpDE two component system, which is highly conserved across all bacterial species. Here, we show that the system is functionally active and KdpD sensor kinase undergoes autophosphorylation and transfers phosphoryl group to KdpE, response regulator protein. We identified His(642) and Asp(52) as conserved phosphorylation sites in KdpD and KdpE respectively and by SPR analysis confirmed the physical interaction between them. KdpD was purified with prebound divalent ions and their importance in phosphorylation was established using protein refolding and ion chelation approaches. Genetically a single transcript encoded both KdpD and KdpE proteins. Overall, we report that M. tuberculosis KdpDE system operates like a canonical two component system. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
Systematic cocrystallization of hydroxybenzoic acids with hexamine using liquid-assisted grinding shows facile solid state interconversion among different stoichiometric variants. The reversible interconversion caused by varying both the acid and base components in tandem is shown to be a consequence of hydrogen-bonded synthon modularity present in all representative crystal structures. Among a total of 11 complexes, three are salts and eight are cocrystals. The insulated synthons appear as conserved tetrameric motifs in the structures, and the mechanism of interconversion is closely monitored by the synthon modularity. The interconversion is consistent with the theoretically computed stabilization energies of all the tetramers found in this series of cocrystals based on atoms in molecule calculations.
Resumo:
Background: DNA-binding protein from starved cells (Dps) are nano-compartments that can oxidize and store iron rendering protection from free radicals. Results: A histidine-aspartate ionic cluster in mycobaterial Dps2 modulates the rate of iron entry and exit in these proteins. Conclusion: Substitutions that disrupt the cluster interface alter the iron uptake/release properties with localized structural changes. Significance: Identifying important gating residues can help in designing nano-delivery vehicles. Dps (DNA-binding protein from starved cells) are dodecameric assemblies belonging to the ferritin family that can bind DNA, carry out ferroxidation, and store iron in their shells. The ferritin-like trimeric pore harbors the channel for the entry and exit of iron. By representing the structure of Dps as a network we have identified a charge-driven interface formed by a histidine aspartate cluster at the pore interface unique to Mycobacterium smegmatis Dps protein, MsDps2. Site-directed mutagenesis was employed to generate mutants to disrupt the charged interactions. Kinetics of iron uptake/release of the wild type and mutants were compared. Crystal structures were solved at a resolution of 1.8-2.2 for the various mutants to compare structural alterations vis a vis the wild type protein. The substitutions at the pore interface resulted in alterations in the side chain conformations leading to an overall weakening of the interface network, especially in cases of substitutions that alter the charge at the pore interface. Contrary to earlier findings where conserved aspartate residues were found crucial for iron release, we propose here that in the case of MsDps2, it is the interplay of negative-positive potentials at the pore that enables proper functioning of the protein. In similar studies in ferritins, negative and positive patches near the iron exit pore were found to be important in iron uptake/release kinetics. The unique ionic cluster in MsDps2 makes it a suitable candidate to act as nano-delivery vehicle, as these gated pores can be manipulated to exhibit conformations allowing for slow or fast rates of iron release.
Resumo:
Background: Muscle-specific deficiency of iron-sulfur (Fe-S) cluster scaffold protein (ISCU) leads to myopathy. Results: Cells carrying the myopathy-associated G50E ISCU mutation demonstrate impaired Fe-S cluster biogenesis and mitochondrial dysfunction. Conclusion: Reduced mitochondrial respiration as a result of diminished Fe-S cluster synthesis results in muscle weakness in myopathy patients. Significance: The molecular mechanism behind disease progression should provide invaluable information to combat ISCU myopathy. Iron-sulfur (Fe-S) clusters are versatile cofactors involved in regulating multiple physiological activities, including energy generation through cellular respiration. Initially, the Fe-S clusters are assembled on a conserved scaffold protein, iron-sulfur cluster scaffold protein (ISCU), in coordination with iron and sulfur donor proteins in human mitochondria. Loss of ISCU function leads to myopathy, characterized by muscle wasting and cardiac hypertrophy. In addition to the homozygous ISCU mutation (g.7044GC), compound heterozygous patients with severe myopathy have been identified to carry the c.149GA missense mutation converting the glycine 50 residue to glutamate. However, the physiological defects and molecular mechanism associated with G50E mutation have not been elucidated. In this report, we uncover mechanistic insights concerning how the G50E ISCU mutation in humans leads to the development of severe ISCU myopathy, using a human cell line and yeast as the model systems. The biochemical results highlight that the G50E mutation results in compromised interaction with the sulfur donor NFS1 and the J-protein HSCB, thus impairing the rate of Fe-S cluster synthesis. As a result, electron transport chain complexes show significant reduction in their redox properties, leading to loss of cellular respiration. Furthermore, the G50E mutant mitochondria display enhancement in iron level and reactive oxygen species, thereby causing oxidative stress leading to impairment in the mitochondrial functions. Thus, our findings provide compelling evidence that the respiration defect due to impaired biogenesis of Fe-S clusters in myopathy patients leads to manifestation of complex clinical symptoms.
Resumo:
The dopamine monoxygenase N-terminal (DOMON) domain is found in extracellular proteins across several eukaryotic and prokaryotic taxa. It has been proposed that this domain binds to heme or sugar moieties. Here, we have analyzed the role of four highly conserved amino acids in the DOMON domain of the Drosophila melanogaster Knickkopf protein that is inserted into the apical plasma membrane and assists extracellular chitin organization. In principal, we generated Knickkopf versions with exchanged residues tryptophan(299,) methionine(333), arginine(401), or histidine(437), and scored for the ability of the respective engineered protein to normalize the knickkopf mutant phenotype. Our results confirm the absolute necessity of tryptophan(299,) methionine(333), and histidine(437) for Knickkopf function and stability, the latter two being predicted to be critical for heme binding. In contrast, arginine(401) is required for full efficiency of Knickkopf activity. Taken together, our genetic data support the prediction of these residues to mediate the function of Knickkopf during cuticle differentiation in insects. Hence, the DOMON domain is apparently an essential factor contributing to the construction of polysaccharide-based extracellular matrices.
Resumo:
The association of a factors with the RNA polymerase dictates the expression profile of a bacterial cell. Major changes to the transcription profile are achieved by the use of multiple sigma factors that confer distinct promoter selectivity to the holoenzyme. The cellular concentration of a sigma factor is regulated by diverse mechanisms involving transcription, translation and post-translational events. The number of sigma factors varies substantially across bacteria. The diversity in the interactions between sigma factors also vary-ranging from collaboration, competition or partial redundancy in some cellular or environmental contexts. These interactions can be rationalized by a mechanistic model referred to as the partitioning of a space model of bacterial transcription. The structural similarity between different sigma/anti-sigma complexes despite poor sequence conservation and cellular localization reveals an elegant route to incorporate diverse regulatory mechanisms within a structurally conserved scaffold. These features are described here with a focus on sigma/anti-sigma complexes from Mycobacterium tuberculosis. In particular, we discuss recent data on the conditional regulation of sigma/anti-sigma factor interactions. Specific stages of M. tuberculosis infection, such as the latent phase, as well as the remarkable adaptability of this pathogen to diverse environmental conditions can be rationalized by the synchronized action of different a factors.
Resumo:
Influenza hemagglutinin (HA) is the primary target of the humoral response during infection/vaccination. Current influenza vaccines typically fail to elicit/boost broadly neutralizing antibodies (bnAbs), thereby limiting their efficacy. Although several bnAbs bind to the conserved stem domain of HA, focusing the immune response to this conserved stem in the presence of the immunodominant, variable head domain of HA is challenging. We report the design of a thermotolerant, disulfide-free, and trimeric HA stem-fragment immunogen which mimics the native, prefusion conformation of HA and binds conformation specific bnAbs with high affinity. The immunogen elicited bnAbs that neutralized highly divergent group 1 (H1 and H5 subtypes) and 2 (H3 subtype) influenza virus strains in vitro. Stem immunogens designed from unmatched, highly drifted influenza strains conferred robust protection against a lethal heterologous A/Puerto Rico/8/34 virus challenge in vivo. Soluble, bacterial expression of such designed immunogens allows for rapid scale-up during pandemic outbreaks.
Resumo:
Mycobacteria harbor unique proteins that regulate protein lysine acylation in a cAMP-regulated manner. These lysine acyltransferases from Mycobacterium smegmatis (KATms) and Mycobacterium tuberculosis (KATmt) show distinctive biochemical properties in terms of cAMP binding affinity to the N-terminal cyclic nucleotide binding domain and allosteric activation of the C-terminal acyltransferase domain. Here we provide evidence for structural features in KATms that account for high affinity cAMP binding and elevated acyltransferase activity in the absence of cAMP. Structure-guided mutational analysis converted KATms from a cAMP-regulated to a cAMP-dependent acyltransferase and identified a unique asparagine residue in the acyltransferase domain of KATms that assists in the enzymatic reaction in the absence of a highly conserved glutamate residue seen in Gcn5-related N-acetyltransferase-like acyltransferases. Thus, we have identified mechanisms by which properties of similar proteins have diverged in two species of mycobacteria by modifications in amino acid sequence, which can dramatically alter the abundance of conformational states adopted by a protein.
Resumo:
D Regulatory information for transcription initiation is present in a stretch of genomic DNA, called the promoter region that is located upstream of the transcription start site (TSS) of the gene. The promoter region interacts with different transcription factors and RNA polymerase to initiate transcription and contains short stretches of transcription factor binding sites (TFBSs), as well as structurally unique elements. Recent experimental and computational analyses of promoter sequences show that they often have non-B-DNA structural motifs, as well as some conserved structural properties, such as stability, bendability, nucleosome positioning preference and curvature, across a class of organisms. Here, we briefly describe these structural features, the differences observed in various organisms and their possible role in regulation of gene expression.
Resumo:
HU, a widely conserved bacterial histone-like protein, regulates many genes, including those involved in stress response and virulence. Whereas ample data are available on HU-DNA communication, the knowledge on how HU perceives a signal and transmit it to DNA remains limited. In this study, we identify HupB, the HU homolog of the human pathogen Mycobacterium tuberculosis, as a component of serine/threonine protein kinase (STPK) signaling. HupB is extracted in its native state from the exponentially growing cells of M. tuberculosis H37Ra and is shown to be phosphorylated on both serine and threonine residues. The STPKs capable of modifying HupB are determined in vitro and the residues modified by the STPKs are identified for both in vivo and the in vitro proteins through mass spectrometry. Of the identified phosphosites, Thr(65) and Thr(74) in the DNA-embracing beta-strand of the N-terminal domain of HupB (N-HupB) are shown to be crucial for its interaction with DNA. In addition, Arg(55) is also identified as an important residue for N-HupB-DNA interaction. N-HupB is shown to have a diminished interaction with DNA after phosphorylation. Furthermore, hupB is shown to be maximally expressed during the stationary phase in M. tuberculosis H37Ra, while HupB kinases were found to be constitutively expressed (PknE and PknF) or most abundant during the exponential phase (PknB). In conclusion, HupB, a DNA-binding protein, with an ability to modulate chromatin structure is proposed to work in a growth-phase-dependent manner through its phosphorylation carried out by the mycobacterial STPKs.
Resumo:
Mitochondrial Hsp70 (mtHsp70) is essential for a vast repertoire of functions, including protein import, and requires effective interdomain communication for efficient partner-protein interactions. However, the in vivo functional significance of allosteric regulation in eukaryotes is poorly defined. Using integrated biochemical and yeast genetic approaches, we provide compelling evidence that a conserved substrate-binding domain (SBD) loop, L-4,L-5, plays a critical role in allosteric communication governing mtHsp70 chaperone functions across species. In yeast, a temperature-sensitive L-4,L-5 mutation (E467A) disrupts bidirectional domain communication, leading to compromised protein import and mitochondrial function. Loop L-4,L-5 functions synergistically with the linker in modulating the allosteric interface and conformational transitions between SBD and the nucleotide-binding domain (NBD), thus regulating interdomain communication. Second-site intragenic suppressors of E467A isolated within the SBD suppress domain communication defects by conformationally altering the allosteric interface, thereby restoring import and growth phenotypes. Strikingly, the suppressor mutations highlight that restoration of communication from NBD to SBD alone is the minimum essential requirement for effective in vivo function when primed at higher basal ATPase activity, mimicking the J-protein-bound state. Together these findings provide the first mechanistic insights into critical regions within the SBD of mtHsp70s regulating interdomain communication, thus highlighting its importance in protein translocation and mitochondrial biogenesis.