947 resultados para Congo
Resumo:
We have been able to convert a small α/β protein, acylphosphatase, from its soluble and native form into insoluble amyloid fibrils of the type observed in a range of pathological conditions. This was achieved by allowing slow growth in a solution containing moderate concentrations of trifluoroethanol. When analyzed with electron microscopy, the protein aggregate present in the sample after long incubation times consisted of extended, unbranched filaments of 30–50 Å in width that assemble subsequently into higher order structures. This fibrillar material possesses extensive β-sheet structure as revealed by far-UV CD and IR spectroscopy. Furthermore, the fibrils exhibit Congo red birefringence, increased fluorescence with thioflavine T and cause a red-shift of the Congo red absorption spectrum. All of these characteristics are typical of amyloid fibrils. The results indicate that formation of amyloid occurs when the native fold of a protein is destabilized under conditions in which noncovalent interactions, and in particular hydrogen bonding, within the polypeptide chain remain favorable. We suggest that amyloid formation is not restricted to a small number of protein sequences but is a property common to many, if not all, natural polypeptide chains under appropriate conditions.
Resumo:
The SH3 domain is a well characterized small protein module with a simple fold found in many proteins. At acid pH, the SH3 domain (PI3-SH3) of the p85α subunit of bovine phosphatidylinositol 3-kinase slowly forms a gel that consists of typical amyloid fibrils as assessed by electron microscopy, a Congo red binding assay, and x-ray fiber diffraction. The soluble form of PI3-SH3 at acid pH (the A state by a variety of techniques) from which fibrils are generated has been characterized. Circular dichroism in the far- and near-UV regions and 1H NMR indicate that the A state is substantially unfolded relative to the native protein at neutral pH. NMR diffusion measurements indicate, however, that the effective hydrodynamic radius of the A state is only 23% higher than that of the native protein and is 20% lower than that of the protein denatured in 3.5 M guanidinium chloride. In addition, the A state binds the hydrophobic dye 1-anilinonaphthalene-8-sulfonic acid, which suggests that SH3 in this state has a partially formed hydrophobic core. These results indicate that the A state is partially folded and support the hypothesis that partially folded states formed in solution are precursors of amyloid deposition. Moreover, that this domain aggregates into amyloid fibrils suggests that the potential for amyloid deposition may be a common property of proteins, and not only of a few proteins associated with disease.
Resumo:
A major activity of molecular chaperones is to prevent aggregation and refold misfolded proteins. However, when allowed to form, protein aggregates are refolded poorly by most chaperones. We show here that the sequential action of two Escherichia coli chaperone systems, ClpB and DnaK-DnaJ-GrpE, can efficiently solubilize excess amounts of protein aggregates and refold them into active proteins. Measurements of aggregate turbidity, Congo red, and 4,4′-dianilino-1,1′-binaphthyl-5,5′-disulfonic acid binding, and of the disaggregation/refolding kinetics by using a specific ClpB inhibitor, suggest a mechanism where (i) ClpB directly binds protein aggregates, ATP induces structural changes in ClpB, which (ii) increase hydrophobic exposure of the aggregates and (iii) allow DnaK-DnaJ-GrpE to bind and mediate dissociation and refolding of solubilized polypeptides into native proteins. This efficient mechanism, whereby chaperones can catalytically solubilize and refold a wide variety of large and stable protein aggregates, is a major addition to the molecular arsenal of the cell to cope with protein damage induced by stress or pathological states.
Resumo:
Mutations in the amyloid precursor protein (APP) gene cause early-onset familial Alzheimer disease (AD) by affecting the formation of the amyloid β (Aβ) peptide, the major constituent of AD plaques. We expressed human APP751 containing these mutations in the brains of transgenic mice. Two transgenic mouse lines develop pathological features reminiscent of AD. The degree of pathology depends on expression levels and specific mutations. A 2-fold overexpression of human APP with the Swedish double mutation at positions 670/671 combined with the V717I mutation causes Aβ deposition in neocortex and hippocampus of 18-month-old transgenic mice. The deposits are mostly of the diffuse type; however, some congophilic plaques can be detected. In mice with 7-fold overexpression of human APP harboring the Swedish mutation alone, typical plaques appear at 6 months, which increase with age and are Congo Red-positive at first detection. These congophilic plaques are accompanied by neuritic changes and dystrophic cholinergic fibers. Furthermore, inflammatory processes indicated by a massive glial reaction are apparent. Most notably, plaques are immunoreactive for hyperphosphorylated tau, reminiscent of early tau pathology. The immunoreactivity is exclusively found in congophilic senile plaques of both lines. In the higher expressing line, elevated tau phosphorylation can be demonstrated biochemically in 6-month-old animals and increases with age. These mice resemble major features of AD pathology and suggest a central role of Aβ in the pathogenesis of the disease.
Resumo:
X-ray diffraction and other biophysical tools reveal features of the atomic structure of an amyloid-like crystal. Sup35, a prion-like protein in yeast, forms fibrillar amyloid assemblies intrinsic to its prion function. We have identified a polar peptide from the N-terminal prion-determining domain of Sup35 that exhibits the amyloid properties of full-length Sup35, including cooperative kinetics of aggregation, fibril formation, binding of the dye Congo red, and the characteristic cross-β x-ray diffraction pattern. Microcrystals of this peptide also share the principal properties of the fibrillar amyloid, including a highly stable, β-sheet-rich structure and the binding of Congo red. The x-ray powder pattern of the microcrystals, extending to 0.9-Å resolution, yields the unit cell dimensions of the well-ordered structure. These dimensions restrict possible atomic models of this amyloid-like structure and demonstrate that it forms packed, parallel-stranded β-sheets. The unusually high density of the crystals shows that the packed β-sheets are dehydrated, despite the polar character of the side chains. These results suggest that amyloid is a highly intermolecularly bonded, dehydrated array of densely packed β-sheets. This dry β-sheet could form as Sup35 partially unfolds to expose the peptide, permitting it to hydrogen-bond to the same peptide of other Sup35 molecules. The implication is that amyloid-forming units may be short segments of proteins, exposed for interactions by partial unfolding.
Resumo:
A 16-amino acid oligopeptide forms a stable β-sheet structure in water. In physiological solutions it is able to self-assemble to form a macroscopic matrix that stains with Congo red. On raising the temperature of the aqueous solution above 70°C, an abrupt structural transition occurs in the CD spectra from a β-sheet to a stable α-helix without a detectable random-coil intermediate. With cooling, it retained the α-helical form and took several weeks at room temperature to partially return to the β-sheet form. Slow formation of the stable β-sheet structure thus shows kinetic irreversibility. Such a formation of very stable β-sheet structures is found in the amyloid of a number of neurological diseases. This oligopeptide could be a model system for studying the protein conformational changes that occurs in scrapie or Alzheimer disease. The abrupt and direct conversion from a β-sheet to an α-helix may also be found in other processes, such as protein folding and protein–protein interaction. Furthermore, such drastic structure changes may also be exploited in biomaterials designed as sensors to detect environmental changes.
Resumo:
A hipótese de \"manipulação comportamental\" supõe que um parasito pode alterar o comportamento de seu hospedeiro visando aumentar a probabilidade de completar seu ciclo evolutivo. Tais alterações aumentariam a taxa de transmissão hospedeirohospedeiro, assegurando ao parasito ou a seus propágulos o encontro de novo hospedeiro. A possibilidade de infecções parasitárias provocarem mudanças comportamentais em seus hospedeiros e a elevada frequência com que o acometimento de seres humanos por larvas de Toxocara e cistos de Toxoplasma ocorre, têm chamado à atenção de pesquisadores interessados no estudo das relações hospedeiro-parasita. Na infecção por Toxoplasma gondii e Toxocara canis, cistos e larvas estão presentes em diversos locais anatômicos incluindo musculatura, coração, pulmões, olhos e cérebro. A presença de parasitos no cérebro dá oportunidade de manipulação do comportamento do hospedeiro. Entretanto, não se sabe qual ou quais mecanismos estão envolvidos no processo de manipulação do comportamento. Os objetivos do presente estudo foram verificar alterações na ansiedade, medo, memória e aprendizagem de Rattus norvegicus experimentalmente infectados por Toxocara canis e/ou Toxoplasma gondii em dois períodos após infecção, bem como a localização das larvas e cistos e presença de placas beta amiloide ( A) na região do hipocampo no tecido cerebral desses roedores corado pela técnica de Hematoxilina e Eosina (HE), e Vermelho de Congo, respectivamente. Foram utilizadas 40 exemplares fêmeas da espécie Rattus norvegicus, com seis a oito semanas. Os animais foram divididos em quatro grupos: Toxocara - 10 ratos infectados com 300 ovos de Toxocara canis, Toxoplasma -10 ratos infectados com 10 cistos de Toxoplasma gondii, Infecção dupla - 10 ratos infectados com 300 ovos de Toxocara canis e 10 cistos de Toxoplasma gondii, e controle - 10 ratos sem infecção. Nos dias 40, 41, 70 e 71 após a infecção, os animais dos grupos infectados e controle foram submetidos à avaliação no Labirinto em Cruz Elevado e Campo aberto. Aos 120 após infecção foi feita avaliação da memória, aprendizado e aversão a urina de gato dos animais no Labirinto de Barnes. No final das análises comportamentais os animais foram levados a eutanásia para retirada do cérebro e confecção dos cortes histológicos preparados em HE e Vermelho de Congo. Os resultados mostraram efeito ansiolítico para ambas as infecções, principalmente para Toxoplasma gondii. Não houve comprometimento da memória e aprendizado no LB, porém os animais infectados por Toxocara canis ou Toxoplasma gondii apresentaram menor tempo para encontrar a toca com urina e entrar nela. A leitura dos cortes histológicos corados com HE mostraram larvas de Toxocara canis e cistos de Toxoplasma gondii em regiões do sistema nervoso central dos animais relacionadas com memória e aprendizado. As lâminas coradas com Vermelho de Congo apresentaram placas beta amiloides ( A) em metade dos animais infectados por Toxoplasma gondii. Conclui-se que a infecção por ambos os parasitos apresenta efeito ansiolítico quando ocorre infecção única. Quando a Infecção ocorre concomitantemente há modulação no comportamento. Além disso, ratas infectadas com infecção única apresentam-se menos aversivas à urina de gatos.
Resumo:
Para la gran mayoría de los afectados por el conflicto, el desplazamiento suele verse como la única opción para procurar encontrar seguridad. La prestación de alguna asistencia básica en los lugares hacia donde las personas huyen hace que este proceso sea un poco más fácil. Pero en ausencia de protección ofrecida por el Estado, el desplazamiento múltiple se ha convertido en una característica definitoria del conflicto en Kivu. Esto tiene implicaciones tanto para la respuesta humanitaria como de desarrollo.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Aethiopia superior vel interior, vulgo Abissinorum sive Presbiteri Ioannis imperium. It was published by Guiljelmum et Johannem Blaeu in 1635. Scale [ca. 1:12,600,000]. Covers Central and Eastern Africa. Map in Latin.The image inside the map neatline is georeferenced to the surface of the earth and fit to the Africa Sinusoidal projected coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as drainage, cities and other human settlements, territorial boundaries, shoreline features, and more. Relief shown pictorially. Includes notes, illustrations of animals, and ornamental cartouche. This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of originators, ground condition dates, scales, and map purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Haute Ethiopie, ou sont L'Empire des Abissins, La Nubie, et le Zanguebar : subdivisés en leurs principales parties, tirés de Sanut de Mercator &c. par le Sr. Sanson d'Abbeville. It was published by P. Mariette in 1655. Covers Central and Eastern Africa. Scale [ca. 1:12,000,000]. Map in French.The image inside the map neatline is georeferenced to the surface of the earth and fit to the Africa Sinusoidal projected coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as drainage, cities and other human settlements, territorial boundaries, shoreline features, and more. Relief shown pictorially.This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of originators, ground condition dates, scales, and map purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Central Africa : on a scale of 1:10,000,000, By Dr. F. Boas. It was published by Hart & Von Arx in 1887. Scale 1:10,000,000 The image inside the map neatline is georeferenced to the surface of the earth and fit to the Africa Sinusoidal projected coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as drainage, cities and other human settlements, shoreline features, and more. Relief shown by shading. This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of originators, ground condition dates, scales, and map purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Carte de l'Egypte, de la Nubie, de l'Abyssinie &c., par Guillaume de l'Isle, de l'Academie Royal a Paris. It was published by Chez Henri de Leth, a l'enseigne du Pecheur ca. 1730. Scale [ca. 1:9,250,000]. Covers the Red Sea region, North Africa including portions of the Middle East and Europe. Map in French.The image inside the map neatline is georeferenced to the surface of the earth and fit to the Africa Sinusoidal projected coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as drainage, major roads, cities and other human settlements, territorial boundaries, shoreline features, and more. Relief shown pictorially. This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of originators, ground condition dates, scales, and map purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Nova tabula Indiae Orientalis. It was published by Carolus Allard excudit, between 1690 and 1710. Scale [ca. 1:5,500,000]. Covers the Indian Ocean Region. Map in Latin. The image inside the map neatline is georeferenced to the surface of the earth and fit to the World Miller Cylindrical projected coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as drainage, roads, cities and other human settlements, territorial boundaries, shoreline features, and more. Relief shown pictorially.This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of originators, ground condition dates, scales, and map purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Map of a portion of South Africa : illustrative of Lieut. Cameron's route from lake Tangayika to the west coast, by E. G. Ravenstein, F.R.G.S. It was published by Geogr. Mag. in 1876. Scale 1:5,000,000. Covers portions of Angola, Democratic Republic of Congo, Rwanda, Burundi, Tanzania, and Zambia. The image inside the map neatline is georeferenced to the surface of the earth and fit to a non-standard 'World Sinusoidal' projection with the central meridian at 20 degrees east. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as expedition routes, drainage, cities and other human settlements, territorial boundaries, and more. Relief is shown by shading. This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection and the Harvard University Library as part of the Open Collections Program at Harvard University project: Organizing Our World: Sponsored Exploration and Scientific Discovery in the Modern Age. Maps selected for the project correspond to various expeditions and represent a range of regions, originators, ground condition dates, scales, and purposes.