813 resultados para Conductive elastomeric composites
Resumo:
The orientation relationships between hexagonal Mo2C precipitates (H) in ferrite (B) have been determined by electron diffraction to an accuracy of +/-2degrees. With one exception, the 19 results are consistent with the previously reported Pitsch and Schrader (P/S) orientation relationship. However, these more accurate determinations show clearly that there is a systematic deviation of up to 5.5degrees from the exact P/S relationship and that this deviation consists of a small rotation about the parallel close packed directions-[100](B)//[2 (1) over bar(1) over bar0](H). The long direction of the Mo2C needles has been determined unequivocally in terms of the orientation relationship to be [100](B)//[2 (1) over bar(1) over bar0](H). Moire fringes between precipitate and matrix have been used to improve the accuracy of the orientation relationship results and to determine the lattice parameters of the carbide precipitates investigated. The Moire fringe analysis has shown small systematic departures from the exact parallelism between [100](B) and [2 (1) over bar(1) over bar0](H) along the length of Mo2C needles and a lowering of the carbide lattice parameter that is consistent with the replacement of Mo by Fe in the carbide. The orientation relationship results, including the observed systematic deviation from the exact P/S relationship, are shown to be consistent with the edge-to-edge model. (C) 2002 Kluwer Academic Publishers.
Resumo:
This paper reviews the current knowledge and understanding of martensitic transformations in ceramics - the tetragonal to monoclinic transformation in zirconia in particular. This martensitic transformation is the key to transformation toughening in zirconia ceramics. A very considerable body of experimental data on the characteristics of this transformation is now available. In addition, theoretical predictions can be made using the phenomenological theory of martensitic transformations. As the paper will illustrate, the phenomenological theory is capable of explaining all the reported microstructural and crystallographic features of the transformation in zirconia and in some other ceramic systems. Hence the theory, supported by experiment, can be used with considerable confidence to provide the quantitative data that is essential for developing a credible, comprehensive understanding of the transformation toughening process. A critical feature in transformation toughening is the shape strain that accompanies the transformation. This shape strain, or nucleation strain, determines whether or not the stress-induced martensitic transformation can occur at the tip of a potentially dangerous crack. If transformation does take place, then it is the net transformation strain left behind in the transformed region that provides toughening by hindering crack growth. The fracture mechanics based models for transformation toughening, therefore, depend on having a full understanding of the characteristics of the martensitic transformation and, in particular, on being able to specify both these strains. A review of the development of the models for transformation toughening shows that their refinement and improvement over the last couple of decades has been largely a result of the inclusion of more of the characteristics of the stress-induced martensitic transformation. The paper advances an improved model for the stress-induced martensitic transformation and the strains resulting from the transformation. This model, which separates the nucleation strain from the subsequent net transformation strain, is shown to be superior to any of the constitutive models currently available. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Convergent beam Kikuchi diffraction was used to accurately determine the orientation relationships (ORs) between austenite and martensite, and between austenite and granular bainite in two Fe-Ni-Mn-C alloys. Both martensite and granular bainite have the same crystallographic characteristics with the OR: (111)(A)parallel to(101)(F), [1 (1) over bar0](A) 2.5degrees +/- 2degrees from [1 (1) over bar(1) over bar](B).
Resumo:
The effect of test temperature, which controls the stability of austenite, on the impact toughness of a low carbon Fe-Ni-Mn-C austenitic steel and 304 stainless steel, has been investigated. Under impact conditions, stress-induced martensitic transformation occurred, in a region near the fracture surface, at test temperatures below 80degreesC for the Fe-Ni-Mn-C steel and below -25degreesC for 304 stainless steel. The former shows significant transformation toughening and the highest impact toughness was obtained at 10degreesC, which corresponds to the maximum amount of martensite formed by stress-induced transformation above the Ms temperature. The stress-induced martensitic transformation contributes negatively to the impact toughness in the 304 stainless steel. Increasing the amount of stress-induced transformation to martensite, lowered the impact toughness. The experimental results can be well explained by the Antolovich theory through the analysis of metallography and fractography. The different effect of stress-induced transformation on the impact toughness in Fe-Ni-Mn-C steel and 304 stainless steel has been further understood by applying the crystallographic model for stress-induced martensitic transformation to these two steels. (C) 2002 Kluwer Academic Publishers.
Resumo:
A new technique of surface modification by diffusion coating for AZ91D alloy was developed. A 1.0-2.0-mm alloy layer, which has hardness four to five times higher than the substrate metal, was formed after the treatment. Consequent solution treatment and aging could further improve the hardness of the alloy layer. Microstructure and chemical composition were investigated using optical microscope and electron probe.
Resumo:
The technique of permanently attaching piezoelectric transducers to structural surfaces has demonstrated great potential for quantitative non-destructive evaluation and smart materials design. For thin structural members such as composite laminated plates, it has been well recognized that guided Lamb wave techniques can provide a very sensitive and effective means for large area interrogation. However, since in these applications multiple wave modes are generally generated and the individual modes are usually dispersive, the received signals are very complex and difficult to interpret. An attractive way to deal with this problem has recently been introduced by applying piezoceramic transducer arrays or interdigital transducer (IDT) technologies. In this paper, the acoustic wave field in composite laminated plates excited by piezoceramic transducer arrays or IDT is investigated. Based on dynamic piezoelectricity theory, a discrete layer theory and a multiple integral transform method, an analytical-numerical approach is developed to evaluate the input impedance characteristics of the transducer and the surface velocity response of the plate. The method enables the quantitative evaluation of the influence of the electrical characteristics of the excitation circuit, the geometric and piezoelectric properties of the transducer array, and the mechanical and geometrical features of the laminate. Numerical results are presented to validate the developed method and show the ability of single wave mode selection and isolation. The results show that the interaction between individual elements of the piezoelectric array has a significant influence on the performance of the IDT, and these effects can not be neglected even in the case of low frequency excitation. It is also demonstrated that adding backing materials to the transducer elements can be used to improve the excitability of specific wave modes. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Two studies investigated the relationships between personality traits and aspects of job satisfaction. In Study 1, job applicants (n=250) completed the Eysenck Personality Profiler and the Work Values Questionnaire (WVQ), which requires respondents to rate various work-related facets according to the extent to which they contribute to their job satisfaction. These facets were combined into two composites (hygiene and motivator) based on previous research. The three personality superfactors accounted for a small percentage of the variance in importance ratings (about 5%). In Study 2, employees (n=82) completed a measure of the 'Big Five' personality traits and the Job Satisfaction Questionnaire (JSQ), which assesses both what respondents consider as important in their work environment as well as their satisfaction with their current job. Importance ratings were again combined into two composites while job satisfaction ratings were factor analyzed and three factors, differentiated along hygiene versus motivator lines, emerged. Personality traits again accounted for a small percentage of the total variance both in importance ratings and in levels of job satisfaction. It is concluded that personality does not have a strong or consistent influence either on what individuals perceive as important in their work environment or on their levels of job satisfaction. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
Two polymer-montmorillonite (MMT) nanocomposites have been synthesized by in situ intercalative polymerization. The styrene monomer is intercalated into the interlayer space of organically modified MMT, a layered clay mineral. Upon the intercalation, the complex is subsequently polymerized in the confinement environment of the interlayer space with a free radical initiator, 2,2-azobis isobutyronitrile. The aniline monomer is also intercalated and then polymerized within the interlayer space of sodium- and copper-MMT initiated by ammonium peroxodisulphate and interlayer copper cations respectively. X-ray diffraction indicates that the MMT layers are completely dispersed in the polystyrene matrix and an exfoliated structure has been obtained. The resulting polyaniline-MMT nanocomposites show a highly ordered structure of a single polyaniline layer stacked with the MMT layers. Fourier transform infrared spectra further confirm the intercalation and formation of both polymer-MMT nanocomposites.
Resumo:
This work examines the effects of level of silica filler (at 0, 10, 30, 50wt%) on the gelation and vitrification of a model silica-filled diglycidyl ether of bisphenol F (DGEBF)/methylenedianiline (MDA) system. An increased filler level is shown to decrease the gelation and vitrification times at low temperatures (below 80degreesC). FTIR cure kinetics show that the reaction rates are increased and the activation energies of gelation are reduced at these temperatures, indicating that network formation is made easier. Entropic and catalytic reasons for this phenomenon are discussed. (C) 2003 Society of Chemical Industry.
Resumo:
Detailed microstructural evidence for the mechanism of the alpha-beta phase transformation in ytterbium SiAlON ceramics is presented. Grains, which show partial transformation, have been examined using transmission electron microscopy. We suggest that the transformation proceeds as a discernable reaction front and the accompanying lattice mismatch is accommodated be a series of complex dislocations. The stabilizing cation is ejected from the transformed alpha- phase and diffuse along the dislocation to accumulate as isolated pockets in a way similar to that observed in metal systems and termed pipe diffusion. High-resolution electron microscopy reveals the details of each of these features.
Resumo:
Steel fiber reinforced concrete (SFRC) is widely applied in the construction industry. Numerical elastoplastic analysis of the macroscopic behavior is complex. This typically involves a piecewise linear failure curve including corner singularities. This paper presents a single smooth biaxial failure curve for SFRC based on a semianalytical approximation. Convexity of the proposed model is guaranteed so that numerical problems are avoided. The model has sufficient flexibility to closely match experimental results. The failure curve is also suitable for modeling plain concrete under biaxial loading. Since this model is capable of simulating the failure states in all stress regimes with a single envelope, the elastoplastic formulation is very concise and simple. The finite element implementation is developed to demonstrate the conciseness and the effectiveness of the model. The computed results display good agreement with published experimental data.
Influence of magnetically-induced E-fields on cardiac electric activity during MRI: A modeling study
Resumo:
In modern magnetic resonance imaging (MRI), patients are exposed to strong, time-varying gradient magnetic fields that may be able to induce electric fields (E-fields)/currents in tissues approaching the level of physiological significance. In this work we present theoretical investigations into induced E-fields in the thorax, and evaluate their potential influence on cardiac electric activity under the assumption that the sites of maximum E-field correspond to the myocardial stimulation threshold (an abnormal circumstance). Whole-body cylindrical and planar gradient coils were included in the model. The calculations of the induced fields are based on an efficient, quasi-static, finite-difference scheme and an anatomically realistic, whole-body model. The potential for cardiac stimulation was evaluated using an electrical model of the heart. Twelve-lead electrocardiogram (ECG) signals were simulated and inspected for arrhythmias caused by the applied fields for both healthy and diseased hearts. The simulations show that the shape of the thorax and the conductive paths significantly influence induced E-fields. In healthy patients, these fields are not sufficient to elicit serious arrhythmias with the use of contemporary gradient sets. However, raising the strength and number of repeated switching episodes of gradients, as is certainly possible in local chest gradient sets, could expose patients to increased risk. For patients with cardiac disease, the risk factors are elevated. By the use of this model, the sensitivity of cardiac pathologies, such as abnormal conductive pathways, to the induced fields generated by an MRI sequence can be investigated. (C) 2003 Wiley-Liss, Inc.
Resumo:
This paper describes the buckling phenomenon of a tubular truss with unsupported length through a full-scale test and presents a practical computational method for the design of the trusses allowing for the contribution of torsional stiffness against buckling, of which the effect has never been considered previously by others. The current practice for the design of a planar truss has largely been based on the linear elastic approach which cannot allow for the contribution of torsional stiffness and tension members in a structural system against buckling. The over-simplified analytical technique is unable to provide a realistic and an economical design to a structure. In this paper the stability theory is applied to the second-order analysis and design of the structural form, with detailed allowance for the instability and second-order effects in compliance with design code requirements. Finally, the paper demonstrates the application of the proposed method to the stability design of a commonly adopted truss system used in support of glass panels in which lateral bracing members are highly undesirable for economical and aesthetic reasons.
Resumo:
This work contains the theoretical simulation of the conformation of diphenyl-4-amine sodium sulphonate (DASNa) and correlates its geometry with conductivity, showing that the conductivity increases as the molecule becomes more planar. The solvent effect was also evaluated, using water and dimethylsulfoxide. Some properties, such as bond distance, vibration al frequency and effective charge were calculated. The utilization of diphenyl-4-amine sodium sulphonate (DASNa) as dopant of aniline was investigated in view of the HOMO-LUMO energy gap.
Resumo:
O objeto de estudo dessa pesquisa é a política de segurança pública brasileira visando compreender o seu percurso ideológico e político no contexto de retomada e da consolidação da democracia no Brasil, após 21 anos de ditadura militar. Considerando o contexto no qual se verifica a existência de disputa política em torno da concepção de segurança pública, o objetivo geral deste trabalho é compreender a matriz estruturante da política de segurança pública no Brasil contemporâneo. Seu intuito visa responder à pergunta inicial e condutora do interesse que estrutura este trabalho, aqui apresentada nos seguintes termos: a política de segurança pública no Brasil após o restabelecimento das eleições diretas para a Presidência da República está em vias de transição, tendendo a assumir caráter democrático ou a força da tradição autoritária na cultura política brasileira tem-se garantido a sua continuidade neste campo da intervenção estatal? Ancoramos a nossa reflexão nas categorias teóricas de dominação, coerção e consenso no pensamento clássico de Hobbes, Marx, Weber e Gramsci, extraindo deles os elementos que nos auxiliam no entendimento da política de segurança pública brasileira. Para o estudo dessa política foi fundamental operarmos uma profunda revisão bibliográfica, especialmente para entender como a manutenção da ordem foi se desenhando no contexto brasileiro e como historicamente tem prevalecido um modelo de segurança pública marcado pelo autoritarismo. Entretanto, a partir da redemocratização brasileira há a emergência de outro paradigma para a política de segurança pública, a segurança cidadã, propondo, entre outras coisas, a reforma das instituições de segurança pública e a formação em direitos humanos nas instituições policiais. Para a análise do paradigma emergente de segurança, buscamos apoio no Programa Nacional dos Direitos Humanos e no Plano Nacional de Segurança Pública, documentos federais que representam a construção de uma nova intencionalidade para a segurança pública no Brasil. Finalmente, reconhecemos que, embora haja significativas reformas na segurança pública, tal política, diante da prevalência de um paradigma de segurança tradicional com fortes componentes autoritários, se encontra entre a segurança cidadã e a continuidade autoritária.