903 resultados para Computer Science, Interdisciplinary Applications
Resumo:
Programming is a skill which requires knowledge of both the basic constructs of the computer language used and techniques employing these constructs. How these are used in any given application is determined intuitively, and this intuition is based on experience of programs already written. One aim of this book is to describe the techniques and give practical examples of the techniques in action - to provide some experience. Another aim of the book is to show how a program should be developed, in particular how a relatively large program should be tackled in a structured manner. These aims are accomplished essentially by describing the writing of one large program, a diagram generator package, in which a number of useful programming techniques are employed. Also, the book provides a useful program, with an in-built manual describing not only how the program works, but also how it does it, with full source code listings. This means that the user can, if required, modify the package to meet particular requirements. A floppy disk is available from the publishers containing the program, including listings of the source code. All the programs are written in Modula-2, using JPI's Top Speed Modula-2 system running on IBM-PCs and compatibles. This language was chosen as it is an ideal language for implementing large programs and it is the main language taught in the Cybernetics Department at the University of Reading. There are some aspects of the Top Speed implementation which are not standard, so suitable comments are given when these occur. Although implemented in Modula-2, many of the techniques described here are appropriate to other languages, like Pascal of C, for example. The book and programs are based on a second year undergraduate course taught at Reading to Cybernetics students, entitled Algorithms and Data Structures. Useful techniques are described for the reader to use, applications where they are appropriate are recommended, but detailed analyses of the techniques are not given.
Resumo:
This paper presents the evaluation in power consumption of a clocking technique for pipelined designs. The technique shows a dynamic power consumption saving of around 30% over a conventional global clocking mechanism. The results were obtained from a series of experiments of a systolic circuit implemented in Virtex-II devices. The conversion from a global-clocked pipelined design to the proposed technique is straightforward, preserving the original datapath design. The savings can be used immediately either as a power reduction benefit or to increase the frequency of operation of a design for the same power consumption.
Resumo:
Climate-G is a large scale distributed testbed devoted to climate change research. It is an unfunded effort started in 2008 and involving a wide community both in Europe and US. The testbed is an interdisciplinary effort involving partners from several institutions and joining expertise in the field of climate change and computational science. Its main goal is to allow scientists carrying out geographical and cross-institutional data discovery, access, analysis, visualization and sharing of climate data. It represents an attempt to address, in a real environment, challenging data and metadata management issues. This paper presents a complete overview about the Climate-G testbed highlighting the most important results that have been achieved since the beginning of this project.
Resumo:
Distributed and collaborative data stream mining in a mobile computing environment is referred to as Pocket Data Mining PDM. Large amounts of available data streams to which smart phones can subscribe to or sense, coupled with the increasing computational power of handheld devices motivates the development of PDM as a decision making system. This emerging area of study has shown to be feasible in an earlier study using technological enablers of mobile software agents and stream mining techniques [1]. A typical PDM process would start by having mobile agents roam the network to discover relevant data streams and resources. Then other (mobile) agents encapsulating stream mining techniques visit the relevant nodes in the network in order to build evolving data mining models. Finally, a third type of mobile agents roam the network consulting the mining agents for a final collaborative decision, when required by one or more users. In this paper, we propose the use of distributed Hoeffding trees and Naive Bayes classifers in the PDM framework over vertically partitioned data streams. Mobile policing, health monitoring and stock market analysis are among the possible applications of PDM. An extensive experimental study is reported showing the effectiveness of the collaborative data mining with the two classifers.
Resumo:
Pocket Data Mining (PDM) describes the full process of analysing data streams in mobile ad hoc distributed environments. Advances in mobile devices like smart phones and tablet computers have made it possible for a wide range of applications to run in such an environment. In this paper, we propose the adoption of data stream classification techniques for PDM. Evident by a thorough experimental study, it has been proved that running heterogeneous/different, or homogeneous/similar data stream classification techniques over vertically partitioned data (data partitioned according to the feature space) results in comparable performance to batch and centralised learning techniques.
Resumo:
This paper describes an approach to teaching and learning that combines elements of ludic engagement, gamification and digital creativity in order to make the learning of a serious subject a fun, interactive and inclusive experience for students regardless of their gender, age, culture, experience or any disabilities that they may have. This approach has been successfully used to teach software engineering to first year students but could in principle be transferred to any subject or discipline.
Resumo:
Nine chess programs competed in July 2015 in the ICGA's World Computer Chess Championship at the Computer Science department of Leiden University. This is the official report of the event.
Resumo:
Non-linear methods for estimating variability in time-series are currently of widespread use. Among such methods are approximate entropy (ApEn) and sample approximate entropy (SampEn). The applicability of ApEn and SampEn in analyzing data is evident and their use is increasing. However, consistency is a point of concern in these tools, i.e., the classification of the temporal organization of a data set might indicate a relative less ordered series in relation to another when the opposite is true. As highlighted by their proponents themselves, ApEn and SampEn might present incorrect results due to this lack of consistency. In this study, we present a method which gains consistency by using ApEn repeatedly in a wide range of combinations of window lengths and matching error tolerance. The tool is called volumetric approximate entropy, vApEn. We analyze nine artificially generated prototypical time-series with different degrees of temporal order (combinations of sine waves, logistic maps with different control parameter values, random noises). While ApEn/SampEn clearly fail to consistently identify the temporal order of the sequences, vApEn correctly do. In order to validate the tool we performed shuffled and surrogate data analysis. Statistical analysis confirmed the consistency of the method. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Searching in a dataset for elements that are similar to a given query element is a core problem in applications that manage complex data, and has been aided by metric access methods (MAMs). A growing number of applications require indices that must be built faster and repeatedly, also providing faster response for similarity queries. The increase in the main memory capacity and its lowering costs also motivate using memory-based MAMs. In this paper. we propose the Onion-tree, a new and robust dynamic memory-based MAM that slices the metric space into disjoint subspaces to provide quick indexing of complex data. It introduces three major characteristics: (i) a partitioning method that controls the number of disjoint subspaces generated at each node; (ii) a replacement technique that can change the leaf node pivots in insertion operations; and (iii) range and k-NN extended query algorithms to support the new partitioning method, including a new visit order of the subspaces in k-NN queries. Performance tests with both real-world and synthetic datasets showed that the Onion-tree is very compact. Comparisons of the Onion-tree with the MM-tree and a memory-based version of the Slim-tree showed that the Onion-tree was always faster to build the index. The experiments also showed that the Onion-tree significantly improved range and k-NN query processing performance and was the most efficient MAM, followed by the MM-tree, which in turn outperformed the Slim-tree in almost all the tests. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In Information Visualization, adding and removing data elements can strongly impact the underlying visual space. We have developed an inherently incremental technique (incBoard) that maintains a coherent disposition of elements from a dynamic multidimensional data set on a 2D grid as the set changes. Here, we introduce a novel layout that uses pairwise similarity from grid neighbors, as defined in incBoard, to reposition elements on the visual space, free from constraints imposed by the grid. The board continues to be updated and can be displayed alongside the new space. As similar items are placed together, while dissimilar neighbors are moved apart, it supports users in the identification of clusters and subsets of related elements. Densely populated areas identified in the incSpace can be efficiently explored with the corresponding incBoard visualization, which is not susceptible to occlusion. The solution remains inherently incremental and maintains a coherent disposition of elements, even for fully renewed sets. The algorithm considers relative positions for the initial placement of elements, and raw dissimilarity to fine tune the visualization. It has low computational cost, with complexity depending only on the size of the currently viewed subset, V. Thus, a data set of size N can be sequentially displayed in O(N) time, reaching O(N (2)) only if the complete set is simultaneously displayed.
Resumo:
While watching TV, viewers use the remote control to turn the TV set on and off, change channel and volume, to adjust the image and audio settings, etc. Worldwide, research institutes collect information about audience measurement, which can also be used to provide personalization and recommendation services, among others. The interactive digital TV offers viewers the opportunity to interact with interactive applications associated with the broadcast program. Interactive TV infrastructure supports the capture of the user-TV interaction at fine-grained levels. In this paper we propose the capture of all the user interaction with a TV remote control-including short term and instant interactions: we argue that the corresponding captured information can be used to create content pervasively and automatically, and that this content can be used by a wide variety of services, such as audience measurement, personalization and recommendation services. The capture of fine grained data about instant and interval-based interactions also allows the underlying infrastructure to offer services at the same scale, such as annotation services and adaptative applications. We present the main modules of an infrastructure for TV-based services, along with a detailed example of a document used to record the user-remote control interaction. Our approach is evaluated by means of a proof-of-concept prototype which uses the Brazilian Digital TV System, the Ginga-NCL middleware.
Resumo:
The evolution of commodity computing lead to the possibility of efficient usage of interconnected machines to solve computationally-intensive tasks, which were previously solvable only by using expensive supercomputers. This, however, required new methods for process scheduling and distribution, considering the network latency, communication cost, heterogeneous environments and distributed computing constraints. An efficient distribution of processes over such environments requires an adequate scheduling strategy, as the cost of inefficient process allocation is unacceptably high. Therefore, a knowledge and prediction of application behavior is essential to perform effective scheduling. In this paper, we overview the evolution of scheduling approaches, focusing on distributed environments. We also evaluate the current approaches for process behavior extraction and prediction, aiming at selecting an adequate technique for online prediction of application execution. Based on this evaluation, we propose a novel model for application behavior prediction, considering chaotic properties of such behavior and the automatic detection of critical execution points. The proposed model is applied and evaluated for process scheduling in cluster and grid computing environments. The obtained results demonstrate that prediction of the process behavior is essential for efficient scheduling in large-scale and heterogeneous distributed environments, outperforming conventional scheduling policies by a factor of 10, and even more in some cases. Furthermore, the proposed approach proves to be efficient for online predictions due to its low computational cost and good precision. (C) 2009 Elsevier B.V. All rights reserved.