831 resultados para Computational Complexity


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate model projections show that climate change will further increase the risk of flooding in many regions of the world. There is a need for climate adaptation, but building new infrastructure or additional retention basins has its limits, especially in densely populated areas where open spaces are limited. Another solution is the more efficient use of the existing infrastructure. This research investigates a method for real-time flood control by means of existing gated weirs and retention basins. The method was tested for the specific study area of the Demer basin in Belgium but is generally applicable. Today, retention basins along the Demer River are controlled by means of adjustable gated weirs based on fixed logic rules. However, because of the high complexity of the system, only suboptimal results are achieved by these rules. By making use of precipitation forecasts and combined hydrological-hydraulic river models, the state of the river network can be predicted. To fasten the calculation speed, a conceptual river model was used. The conceptual model was combined with a Model Predictive Control (MPC) algorithm and a Genetic Algorithm (GA). The MPC algorithm predicts the state of the river network depending on the positions of the adjustable weirs in the basin. The GA generates these positions in a semi-random way. Cost functions, based on water levels, were introduced to evaluate the efficiency of each generation, based on flood damage minimization. In the final phase of this research the influence of the most important MPC and GA parameters was investigated by means of a sensitivity study. The results show that the MPC-GA algorithm manages to reduce the total flood volume during the historical event of September 1998 by 46% in comparison with the current regulation. Based on the MPC-GA results, some recommendations could be formulated to improve the logic rules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this research the 3DVAR data assimilation scheme is implemented in the numerical model DIVAST in order to optimize the performance of the numerical model by selecting an appropriate turbulence scheme and tuning its parameters. Two turbulence closure schemes: the Prandtl mixing length model and the two-equation k-ε model were incorporated into DIVAST and examined with respect to their universality of application, complexity of solutions, computational efficiency and numerical stability. A square harbour with one symmetrical entrance subject to tide-induced flows was selected to investigate the structure of turbulent flows. The experimental part of the research was conducted in a tidal basin. A significant advantage of such laboratory experiment is a fully controlled environment where domain setup and forcing are user-defined. The research shows that the Prandtl mixing length model and the two-equation k-ε model, with default parameterization predefined according to literature recommendations, overestimate eddy viscosity which in turn results in a significant underestimation of velocity magnitudes in the harbour. The data assimilation of the model-predicted velocity and laboratory observations significantly improves model predictions for both turbulence models by adjusting modelled flows in the harbour to match de-errored observations. 3DVAR allows also to identify and quantify shortcomings of the numerical model. Such comprehensive analysis gives an optimal solution based on which numerical model parameters can be estimated. The process of turbulence model optimization by reparameterization and tuning towards optimal state led to new constants that may be potentially applied to complex turbulent flows, such as rapidly developing flows or recirculating flows.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recent advances in CMOS technology have allowed for the fabrication of transistors with submicronic dimensions, making possible the integration of tens of millions devices in a single chip that can be used to build very complex electronic systems. Such increase in complexity of designs has originated a need for more efficient verification tools that could incorporate more appropriate physical and computational models. Timing verification targets at determining whether the timing constraints imposed to the design may be satisfied or not. It can be performed by using circuit simulation or by timing analysis. Although simulation tends to furnish the most accurate estimates, it presents the drawback of being stimuli dependent. Hence, in order to ensure that the critical situation is taken into account, one must exercise all possible input patterns. Obviously, this is not possible to accomplish due to the high complexity of current designs. To circumvent this problem, designers must rely on timing analysis. Timing analysis is an input-independent verification approach that models each combinational block of a circuit as a direct acyclic graph, which is used to estimate the critical delay. First timing analysis tools used only the circuit topology information to estimate circuit delay, thus being referred to as topological timing analyzers. However, such method may result in too pessimistic delay estimates, since the longest paths in the graph may not be able to propagate a transition, that is, may be false. Functional timing analysis, in turn, considers not only circuit topology, but also the temporal and functional relations between circuit elements. Functional timing analysis tools may differ by three aspects: the set of sensitization conditions necessary to declare a path as sensitizable (i.e., the so-called path sensitization criterion), the number of paths simultaneously handled and the method used to determine whether sensitization conditions are satisfiable or not. Currently, the two most efficient approaches test the sensitizability of entire sets of paths at a time: one is based on automatic test pattern generation (ATPG) techniques and the other translates the timing analysis problem into a satisfiability (SAT) problem. Although timing analysis has been exhaustively studied in the last fifteen years, some specific topics have not received the required attention yet. One such topic is the applicability of functional timing analysis to circuits containing complex gates. This is the basic concern of this thesis. In addition, and as a necessary step to settle the scenario, a detailed and systematic study on functional timing analysis is also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Point pattern matching in Euclidean Spaces is one of the fundamental problems in Pattern Recognition, having applications ranging from Computer Vision to Computational Chemistry. Whenever two complex patterns are encoded by two sets of points identifying their key features, their comparison can be seen as a point pattern matching problem. This work proposes a single approach to both exact and inexact point set matching in Euclidean Spaces of arbitrary dimension. In the case of exact matching, it is assured to find an optimal solution. For inexact matching (when noise is involved), experimental results confirm the validity of the approach. We start by regarding point pattern matching as a weighted graph matching problem. We then formulate the weighted graph matching problem as one of Bayesian inference in a probabilistic graphical model. By exploiting the existence of fundamental constraints in patterns embedded in Euclidean Spaces, we prove that for exact point set matching a simple graphical model is equivalent to the full model. It is possible to show that exact probabilistic inference in this simple model has polynomial time complexity with respect to the number of elements in the patterns to be matched. This gives rise to a technique that for exact matching provably finds a global optimum in polynomial time for any dimensionality of the underlying Euclidean Space. Computational experiments comparing this technique with well-known probabilistic relaxation labeling show significant performance improvement for inexact matching. The proposed approach is significantly more robust under augmentation of the sizes of the involved patterns. In the absence of noise, the results are always perfect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This doctoral dissertation analyzes two novels by the American novelist Robert Coover as examples of hypertextual writing on the book bound page, as tokens of hyperfiction. The complexity displayed in the novels, John's Wife and The Adventures of Lucky Pierre, integrates the cultural elements that characterize the contemporary condition of capitalism and technologized practices that have fostered a different subjectivity evidenced in hypertextual writing and reading, the posthuman subjectivity. The models that account for the complexity of each novel are drawn from the concept of strange attractors in Chaos Theory and from the concept of rhizome in Nomadology. The transformations the characters undergo in the degree of their corporeality sets the plane on which to discuss turbulence and posthumanity. The notions of dynamic patterns and strange attractors, along with the concept of the Body without Organs and Rhizome are interpreted, leading to the revision of narratology and to analytical categories appropriate to the study of the novels. The reading exercised throughout this dissertation enacts Daniel Punday's corporeal reading. The changes in the characters' degree of materiality are associated with the stages of order, turbulence and chaos in the story, bearing on the constitution of subjectivity within and along the reading process. Coover's inscription of planes of consistency to counter linearity and accommodate hypertextual features to the paper supported narratives describes the characters' trajectory as rhizomatic. The study led to the conclusion that narrative today stands more as a regime in a rhizomatic relation with other regimes in cultural practice than as an exclusively literary form and genre. Besides this, posthuman subjectivity emerges as class identity, holding hypertextual novels as their literary form of choice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Starting from the idea that economic systems fall into complexity theory, where its many agents interact with each other without a central control and that these interactions are able to change the future behavior of the agents and the entire system, similar to a chaotic system we increase the model of Russo et al. (2014) to carry out three experiments focusing on the interaction between Banks and Firms in an artificial economy. The first experiment is relative to Relationship Banking where, according to the literature, the interaction over time between Banks and Firms are able to produce mutual benefits, mainly due to reduction of the information asymmetry between them. The following experiment is related to information heterogeneity in the credit market, where the larger the bank, the higher their visibility in the credit market, increasing the number of consult for new loans. Finally, the third experiment is about the effects on the credit market of the heterogeneity of prices that Firms faces in the goods market.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Online geographic-databases have been growing increasingly as they have become a crucial source of information for both social networks and safety-critical systems. Since the quality of such applications is largely related to the richness and completeness of their data, it becomes imperative to develop adaptable and persistent storage systems, able to make use of several sources of information as well as enabling the fastest possible response from them. This work will create a shared and extensible geographic model, able to retrieve and store information from the major spatial sources available. A geographic-based system also has very high requirements in terms of scalability, computational power and domain complexity, causing several difficulties for a traditional relational database as the number of results increases. NoSQL systems provide valuable advantages for this scenario, in particular graph databases which are capable of modeling vast amounts of inter-connected data while providing a very substantial increase of performance for several spatial requests, such as finding shortestpath routes and performing relationship lookups with high concurrency. In this work, we will analyze the current state of geographic information systems and develop a unified geographic model, named GeoPlace Explorer (GE). GE is able to import and store spatial data from several online sources at a symbolic level in both a relational and a graph databases, where several stress tests were performed in order to find the advantages and disadvantages of each database paradigm.