904 resultados para Complex systems
Resumo:
Rats produce ultrasonic vocalizations that can be categorized into two types of ultrasonic calls based on their sonographic structure. One group contains 22-kHz ultrasonic vocalization (USVs), characterized by relatively constant (flat) frequency with peak frequency ranging from 19 to 28-kHz, and a call duration ranging between 100 – 3000 ms. These vocalization can be induced by cholinomimetic agents injected into the ascending mesolimbic cholinergic system that terminates in the anterior hypothalamic-preoptic area (AH-MPO) and lateral septum (LS). The other group of USVs contains 50-kHz USVs, characterized by high peak frequency, ranging from 39 to 90-kHz, short duration ranging from 10-90 ms, and varying frequency and complex sonographic morphology. These vocalizations can be induced by dopaminergic agents injected into the nucleus accumbens, the target area for the mesolimbic dopaminergic system. 22-kHz USVs are emitted in situations that are highly aversive, such as proximity of a predator or anticipation of a foot shock, while 50 kHz USVs are emitted in rewarding and appetitive situations, such as juvenile play behaviour or anticipation of rewarding electrical brain stimulation. The activities of these two mesolimbic systems were postulated to be antagonistic to each other. The current thesis is focused on the interaction of these systems indexed by emission of relevant USVs. It was hypothesized that emission of 22 kHz USVs will be antagonized by prior activation of the dopaminergic system while emission of 50 kHz will be antagonized by prior activation of the cholinergic system. It was found that injection of apomorphine into the shell of the nucleus accumbens significantly decreased the number of carbachol-induced 22 kHz USVs from both AH-MPO and LS. Injection of carbachol into the LS significantly decreased the number of apomorphine-induced 50 kHz USVs from the shell of the nucleus accumbens. The results of the study supported the main hypotheses that the mesolimbic dopaminergic and cholinergic systems function in antagonism to each other.
Resumo:
Complex networks can arise naturally and spontaneously from all things that act as a part of a larger system. From the patterns of socialization between people to the way biological systems organize themselves, complex networks are ubiquitous, but are currently poorly understood. A number of algorithms, designed by humans, have been proposed to describe the organizational behaviour of real-world networks. Consequently, breakthroughs in genetics, medicine, epidemiology, neuroscience, telecommunications and the social sciences have recently resulted. The algorithms, called graph models, represent significant human effort. Deriving accurate graph models is non-trivial, time-intensive, challenging and may only yield useful results for very specific phenomena. An automated approach can greatly reduce the human effort required and if effective, provide a valuable tool for understanding the large decentralized systems of interrelated things around us. To the best of the author's knowledge this thesis proposes the first method for the automatic inference of graph models for complex networks with varied properties, with and without community structure. Furthermore, to the best of the author's knowledge it is the first application of genetic programming for the automatic inference of graph models. The system and methodology was tested against benchmark data, and was shown to be capable of reproducing close approximations to well-known algorithms designed by humans. Furthermore, when used to infer a model for real biological data the resulting model was more representative than models currently used in the literature.
Object-Oriented Genetic Programming for the Automatic Inference of Graph Models for Complex Networks
Resumo:
Complex networks are systems of entities that are interconnected through meaningful relationships. The result of the relations between entities forms a structure that has a statistical complexity that is not formed by random chance. In the study of complex networks, many graph models have been proposed to model the behaviours observed. However, constructing graph models manually is tedious and problematic. Many of the models proposed in the literature have been cited as having inaccuracies with respect to the complex networks they represent. However, recently, an approach that automates the inference of graph models was proposed by Bailey [10] The proposed methodology employs genetic programming (GP) to produce graph models that approximate various properties of an exemplary graph of a targeted complex network. However, there is a great deal already known about complex networks, in general, and often specific knowledge is held about the network being modelled. The knowledge, albeit incomplete, is important in constructing a graph model. However it is difficult to incorporate such knowledge using existing GP techniques. Thus, this thesis proposes a novel GP system which can incorporate incomplete expert knowledge that assists in the evolution of a graph model. Inspired by existing graph models, an abstract graph model was developed to serve as an embryo for inferring graph models of some complex networks. The GP system and abstract model were used to reproduce well-known graph models. The results indicated that the system was able to evolve models that produced networks that had structural similarities to the networks generated by the respective target models.
Resumo:
Un objectif principal du génie logiciel est de pouvoir produire des logiciels complexes, de grande taille et fiables en un temps raisonnable. La technologie orientée objet (OO) a fourni de bons concepts et des techniques de modélisation et de programmation qui ont permis de développer des applications complexes tant dans le monde académique que dans le monde industriel. Cette expérience a cependant permis de découvrir les faiblesses du paradigme objet (par exemples, la dispersion de code et le problème de traçabilité). La programmation orientée aspect (OA) apporte une solution simple aux limitations de la programmation OO, telle que le problème des préoccupations transversales. Ces préoccupations transversales se traduisent par la dispersion du même code dans plusieurs modules du système ou l’emmêlement de plusieurs morceaux de code dans un même module. Cette nouvelle méthode de programmer permet d’implémenter chaque problématique indépendamment des autres, puis de les assembler selon des règles bien définies. La programmation OA promet donc une meilleure productivité, une meilleure réutilisation du code et une meilleure adaptation du code aux changements. Très vite, cette nouvelle façon de faire s’est vue s’étendre sur tout le processus de développement de logiciel en ayant pour but de préserver la modularité et la traçabilité, qui sont deux propriétés importantes des logiciels de bonne qualité. Cependant, la technologie OA présente de nombreux défis. Le raisonnement, la spécification, et la vérification des programmes OA présentent des difficultés d’autant plus que ces programmes évoluent dans le temps. Par conséquent, le raisonnement modulaire de ces programmes est requis sinon ils nécessiteraient d’être réexaminés au complet chaque fois qu’un composant est changé ou ajouté. Il est cependant bien connu dans la littérature que le raisonnement modulaire sur les programmes OA est difficile vu que les aspects appliqués changent souvent le comportement de leurs composantes de base [47]. Ces mêmes difficultés sont présentes au niveau des phases de spécification et de vérification du processus de développement des logiciels. Au meilleur de nos connaissances, la spécification modulaire et la vérification modulaire sont faiblement couvertes et constituent un champ de recherche très intéressant. De même, les interactions entre aspects est un sérieux problème dans la communauté des aspects. Pour faire face à ces problèmes, nous avons choisi d’utiliser la théorie des catégories et les techniques des spécifications algébriques. Pour apporter une solution aux problèmes ci-dessus cités, nous avons utilisé les travaux de Wiels [110] et d’autres contributions telles que celles décrites dans le livre [25]. Nous supposons que le système en développement est déjà décomposé en aspects et classes. La première contribution de notre thèse est l’extension des techniques des spécifications algébriques à la notion d’aspect. Deuxièmement, nous avons défini une logique, LA , qui est utilisée dans le corps des spécifications pour décrire le comportement de ces composantes. La troisième contribution consiste en la définition de l’opérateur de tissage qui correspond à la relation d’interconnexion entre les modules d’aspect et les modules de classe. La quatrième contribution concerne le développement d’un mécanisme de prévention qui permet de prévenir les interactions indésirables dans les systèmes orientés aspect.
Resumo:
Les logiciels sont en constante évolution, nécessitant une maintenance et un développement continus. Ils subissent des changements tout au long de leur vie, que ce soit pendant l'ajout de nouvelles fonctionnalités ou la correction de bogues. Lorsque les logiciels évoluent, leurs architectures ont tendance à se dégrader et deviennent moins adaptables aux nouvelles spécifications des utilisateurs. En effet, les architectures de ces logiciels deviennent plus complexes et plus difficiles à maintenir à cause des nombreuses dépendances entre les artefacts. Par conséquent, les développeurs doivent comprendre les dépendances entre les artefacts des logiciels pour prendre des mesures proactives qui facilitent les futurs changements et ralentissent la dégradation des architectures des logiciels. D'une part, le maintien d'un logiciel sans la compréhension des les dépendances entre ses artefacts peut conduire à l'introduction de défauts. D'autre part, lorsque les développeurs manquent de connaissances sur l'impact de leurs activités de maintenance, ils peuvent introduire des défauts de conception, qui ont un impact négatif sur l'évolution du logiciel. Ainsi, les développeurs ont besoin de mécanismes pour comprendre comment le changement d'un artefact impacte le reste du logiciel. Dans cette thèse, nous proposons trois contributions principales : La spécification de deux nouveaux patrons de changement et leurs utilisations pour fournir aux développeurs des informations utiles concernant les dépendances de co-changement. La spécification de la relation entre les patrons d'évolutions des artefacts et les fautes. La découverte de la relation entre les dépendances des anti-patrons et la prédisposition des différentes composantes d'un logiciel aux fautes.
Resumo:
Le système de différenciation entre le « soi » et le « non-soi » des vertébrés permet la détection et le rejet de pathogènes et de cellules allogéniques. Il requiert la surveillance de petits peptides présentés à la surface cellulaire par les molécules du complexe majeur d’histocompatibilité de classe I (CMH I). Les molécules du CMH I sont des hétérodimères composés par une chaîne lourde encodée par des gènes du CMH et une chaîne légère encodée par le gène β2-microglobuline. L’ensemble des peptides est appelé l’immunopeptidome du CMH I. Nous avons utilisé des approches en biologie de systèmes pour définir la composition et l’origine cellulaire de l’immunopeptidome du CMH I présenté par des cellules B lymphoblastoïdes dérivés de deux pairs de fratries avec un CMH I identique. Nous avons découvert que l’immunopeptidome du CMH I est spécifique à l’individu et au type cellulaire, qu’il dérive préférentiellement de transcrits abondants, est enrichi en transcrits possédant d’éléments de reconnaissance par les petits ARNs, mais qu’il ne montre aucun biais ni vers les régions génétiques invariables ni vers les régions polymorphiques. Nous avons également développé une nouvelle méthode qui combine la spectrométrie de masse, le séquençage de nouvelle génération et la bioinformatique pour l’identification à grand échelle de peptides du CMH I, dont ceux résultants de polymorphismes nucléotidiques simples non-synonymes (PNS-ns), appelés antigènes mineurs d’histocompatibilité (AMHs), qui sont les cibles de réponses allo-immunitaires. La comparaison de l’origine génomique de l’immunopeptidome de soeurs avec un CMH I identique a révélé que 0,5% des PNS-ns étaient représentés dans l’immunopeptidome et que 0,3% des peptides du CMH I seraient immunogéniques envers une des deux soeurs. En résumé, nous avons découvert des nouveaux facteurs qui modèlent l’immunopeptidome du CMH I et nous présentons une nouvelle stratégie pour l’indentification de ces peptides, laquelle pourrait accélérer énormément le développement d’immunothérapies ciblant les AMHs.
Resumo:
Microwave ceramic dielectric materials Ca5Nb2TiO12 and Ca5Ta2TiO12 have been prepared by a conventional solid-state ceramic process. The structure was studied by X-ray diffraction and the dielectric properties were characterized at microwave frequencies. The ceramics posses a relatively high dielectric constant, very low dielectric loss (Q5 x f > 30000GHz) and small temperature variation of resonant frequency. These materials are potential candidates for dielectric resonator applications in microwave integrated circuits. [DOI: 10. 1 143/JJAP.41.3834]
Resumo:
Nonlinear dynamics has emerged into a prominent area of research in the past few Decades.Turbulence, Pattern formation,Multistability etc are some of the important areas of research in nonlinear dynamics apart from the study of chaos.Chaos refers to the complex evolution of a deterministic system, which is highly sensitive to initial conditions. The study of chaos theory started in the modern sense with the investigations of Edward Lorentz in mid 60's. Later developments in this subject provided systematic development of chaos theory as a science of deterministic but complex and unpredictable dynamical systems. This thesis deals with the effect of random fluctuations with its associated characteristic timescales on chaos and synchronization. Here we introduce the concept of noise, and two familiar types of noise are discussed. The classifications and representation of white and colored noise are introduced. Based on this we introduce the concept of randomness that we deal with as a variant of the familiar concept of noise. The dynamical systems introduced are the Rossler system, directly modulated semiconductor lasers and the Harmonic oscillator. The directly modulated semiconductor laser being not a much familiar dynamical system, we have included a detailed introduction to its relevance in Chaotic encryption based cryptography in communication. We show that the effect of a fluctuating parameter mismatch on synchronization is to destroy the synchronization. Further we show that the relation between synchronization error and timescales can be found empirically but there are also cases where this is not possible. Studies show that under the variation of the parameters, the system becomes chaotic, which appears to be the period doubling route to chaos.
Resumo:
FPS is a more general form of synchronization. Hyperchaotic systems possessing more than one positive Lypaunov exponent exhibit highly complex behaviour and are more suitable for some applications like secure communications. In this thesis we report studies of FPS and MFPS of a few chaotic and hyperchaotic systems. When all the parameters of the system are known we show that active nonlinear control method can be efectively used to obtain FPS. Adaptive nonlinear control and OPCL control method are employed for obtaining FPS and MFPS when some or all parameters of the system are uncertain. A secure communication scheme based on MFPS is also proposed in theory. All our theoretical calculations are verified by numerical simulations.
Studies on some supported transition metal complex and metal oxide catalysts for oxidation reactions
Resumo:
Zeolite encapsulated transition metal complexes have received wide attention as an effective heterogenized system that combines the tremendous activity of the metal complexes and the attractive features of the zeolite structure. Zeolite encapsulated complexes offer a bright future for attempts to replace homogeneous systems retaining its catalytic activity and minimizing the technical problems. especially for the partial oxidation of organic compounds. Studies on some zeolite encapsulated transition metal complexes are presented in this thesis. The ligands selected are technically important in a bio-mimetic or structural perspective. Attempts have been made in this study to investigate the composition, structure and stability of encapsulated complexes using available techniques. The catalytic activity of encapsulated complexes was evaluated for the oxidation of some organic compounds. The recycling ability of the catalyst as a result of the encapsulation was also studied.Our studies on Cu-Cr/Al2O3, a typical metal oxide catalyst. illustrate the use of design techniques to modify the properties of such conventional catalysts. The catalytic activity of this catalyst for the oxidation of carbon monoxide was measured. The effect of additives like Ce02 or Ti02 on the activity and stability of this system was also investigated. The additive is potent to improve the activity and stability ofthe catalyst so as to be more effective in commercial usage.
Resumo:
Nonlinear time series analysis is employed to study the complex behaviour exhibited by a coupled pair of Rossler systems. Dimensional analysis with emphasis on the topological correlation dimension and the Kolmogorov entropy of the system is carried out in the coupling parameter space. The regime of phase synchronization is identified and the extent of synchronization between the systems constituting the coupled system is quantified by the phase synchronization index. The effect of noise on the coupling between the systems is also investigated. An exhaustive study of the topological, dynamical and synchronization properties of the nonlinear system under consideration in its characteristic parameter space is attempted.
Resumo:
Hevea latex is a natural biological liquid of very complex composition .Besides rubber hydrocarbons,it contains many proteinous and resinous substances,carbohydrates,inorganic matter,water,and others.The Dry Rubber Content (DRC) of latex varies according to season, tapping system,weather,soil conditions ,clone,age of the tree etc. The true DRC of the latex must be determined to ensure fair prices for the latex during commercial exchange.The DRC of Hevea latex is a very familiar term to all in the rubber industry.It has been the basis for incentive payments to tappers who bring in more than the daily agreed poundage of latex.It is an important parameter for rubber and latex processing industries for automation and verious decesion making processes.This thesis embodies the efforts made by me to determine the DRC of rubber latex following different analytical tools such as MIR absorption,thermal analysis.dielectric spectroscopy and NIR reflectance.The rubber industry is still Looking for a compact instrument that is accurate economical,easy to use and environment friendly.I hope the results presented in this thesis will help to realise this goal in the near future.
Resumo:
Timely detection of sudden change in dynamics that adversely affect the performance of systems and quality of products has great scientific relevance. This work focuses on effective detection of dynamical changes of real time signals from mechanical as well as biological systems using a fast and robust technique of permutation entropy (PE). The results are used in detecting chatter onset in machine turning and identifying vocal disorders from speech signal.Permutation Entropy is a nonlinear complexity measure which can efficiently distinguish regular and complex nature of any signal and extract information about the change in dynamics of the process by indicating sudden change in its value. Here we propose the use of permutation entropy (PE), to detect the dynamical changes in two non linear processes, turning under mechanical system and speech under biological system.Effectiveness of PE in detecting the change in dynamics in turning process from the time series generated with samples of audio and current signals is studied. Experiments are carried out on a lathe machine for sudden increase in depth of cut and continuous increase in depth of cut on mild steel work pieces keeping the speed and feed rate constant. The results are applied to detect chatter onset in machining. These results are verified using frequency spectra of the signals and the non linear measure, normalized coarse-grained information rate (NCIR).PE analysis is carried out to investigate the variation in surface texture caused by chatter on the machined work piece. Statistical parameter from the optical grey level intensity histogram of laser speckle pattern recorded using a charge coupled device (CCD) camera is used to generate the time series required for PE analysis. Standard optical roughness parameter is used to confirm the results.Application of PE in identifying the vocal disorders is studied from speech signal recorded using microphone. Here analysis is carried out using speech signals of subjects with different pathological conditions and normal subjects, and the results are used for identifying vocal disorders. Standard linear technique of FFT is used to substantiate thc results.The results of PE analysis in all three cases clearly indicate that this complexity measure is sensitive to change in regularity of a signal and hence can suitably be used for detection of dynamical changes in real world systems. This work establishes the application of the simple, inexpensive and fast algorithm of PE for the benefit of advanced manufacturing process as well as clinical diagnosis in vocal disorders.
Resumo:
Identification and Control of Non‐linear dynamical systems are challenging problems to the control engineers.The topic is equally relevant in communication,weather prediction ,bio medical systems and even in social systems,where nonlinearity is an integral part of the system behavior.Most of the real world systems are nonlinear in nature and wide applications are there for nonlinear system identification/modeling.The basic approach in analyzing the nonlinear systems is to build a model from known behavior manifest in the form of system output.The problem of modeling boils down to computing a suitably parameterized model,representing the process.The parameters of the model are adjusted to optimize a performanace function,based on error between the given process output and identified process/model output.While the linear system identification is well established with many classical approaches,most of those methods cannot be directly applied for nonlinear system identification.The problem becomes more complex if the system is completely unknown but only the output time series is available.Blind recognition problem is the direct consequence of such a situation.The thesis concentrates on such problems.Capability of Artificial Neural Networks to approximate many nonlinear input-output maps makes it predominantly suitable for building a function for the identification of nonlinear systems,where only the time series is available.The literature is rich with a variety of algorithms to train the Neural Network model.A comprehensive study of the computation of the model parameters,using the different algorithms and the comparison among them to choose the best technique is still a demanding requirement from practical system designers,which is not available in a concise form in the literature.The thesis is thus an attempt to develop and evaluate some of the well known algorithms and propose some new techniques,in the context of Blind recognition of nonlinear systems.It also attempts to establish the relative merits and demerits of the different approaches.comprehensiveness is achieved in utilizing the benefits of well known evaluation techniques from statistics. The study concludes by providing the results of implementation of the currently available and modified versions and newly introduced techniques for nonlinear blind system modeling followed by a comparison of their performance.It is expected that,such comprehensive study and the comparison process can be of great relevance in many fields including chemical,electrical,biological,financial and weather data analysis.Further the results reported would be of immense help for practical system designers and analysts in selecting the most appropriate method based on the goodness of the model for the particular context.
Resumo:
The nonlinear dynamics of certain important reaction systems are discussed and analysed in this thesis. The interest in the theoretical and the experimental studies of chemical reactions showing oscillatory dynamics and associated properties is increasing very rapidly. An attempt is made to study some nonlinear phenomena exhibited by the well known chemical oscillator, the BelousovZhabotinskii reaction whose mathematical properties are much in common with the properties of biological oscillators. While extremely complex, this reaction is still much simpler than biological systems at least from the modelling point of view. A suitable model [19] for the system is analysed and the researcher has studied the limit cycle behaviour of the system, for different values of the stoichiometric parameter f, by keeping the value of the reaction rate (k6) fixed at k6 = l. The more complicated three-variable model is stiff in nature.