951 resultados para Complex networks. Magnetic system. Metropolis
Resumo:
Retinal neurons with distinct dendritic morphologies are likely to comprise different cell types, subject to three important caveats. First, it is necessary to avoid creating “artificial” cell types based on arbitrary criteria—for example, the presence of two or three primary dendrites. Second, it is essential to take into account changes in morphology with retinal eccentricity and cell density. Third, the retina contains imperfections like any natural system and a significant number of retinal neurons display aberrant morphologies or make aberrant connections that are not typical of the population as a whole. Many types of retinal ganglion cells show diverse patterns of tracer coupling, with the simplest pattern represented by the homologous coupling shown by On-Off direction-selective (DS) ganglion cells in the rabbit retina. Neighboring DS ganglion cells with a common preferred direction have regularly spaced somata and territorial dendritic fields, whereas DS ganglion cells with different preferred directions may have closely spaced somata and overlapping dendritic fields.
Resumo:
A new gold(I) complex with 2-mercaptothiazoline (MTZ) with the coordination formula [AuCN(C(3)H(5)NS(2))] was synthesized and characterized by chemical and spectroscopic measurements, OFT studies and biological assays. Infrared (IR) and (1)H, (13)C and (15)N nuclear magnetic resonance (NMR) spectroscopic measurements indicate coordination of the ligand to gold(I) through the nitrogen atom. Studies based on OFT confirmed nitrogen coordination to gold(I) as a minimum of the potential energy surface with calculations of the hessians showing no imaginary frequencies. Thermal decomposition starts at temperatures near 160 degrees C, leading to the formation of Au as the final residue at 1000 degrees C. The gold(I) complex with 2-mercaptothiazoline (Au-MTZ) is soluble in dimethyl sulfoxide (DMSO), and is insoluble in water, methanol, ethanol, acetonitrile and hexane. The antibacterial activities of the Au-MTZ complex were evaluated by an antibiogram assay using the disc diffusion method. The compound showed an effective antibacterial activity against Staphylococcus aureus (Gram-positive) and Escherichia coli and Pseudomonas aeruginosa (Gram-negative) bacterial cells. Biological analysis for evaluation of the cytotoxic effect of the Au-MTZ complex was performed using HeLa cells derived from human cervical adenocarcinoma. The complex presented a potent cytotoxic activity, inducing 85% of cell death at a concentration of 2.0 mu mol L(-1). (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Nematode parasites from the genus Strongyloides spp. are important pathogens of the intestinal mucosa of animals and humans. Their complex life cycles involve alternating developmental adaptations between larvae stages and the adult parthenogenetic female. Here, we report, primarily through homology-based searching, the existence of the major components of the ubiquitin-proteasome system in this genus, using the available EST data from S. ratti, S. stercoralis, and Parastrongyloides trichosuri. In this study, S. venezuelensis was used as our model organism for detection of proteasome activity and ubiquitinated substrates in cytosolic preparations from the L3 larvae and the adult female. Marked differences in proteasome capabilities were found when these two stages were compared. A preference for degradation of chymotryptic synthetic peptides was found in both stages with the adult exhibiting a higher rate of hydrolysis compared to the larvae. Due to the high evolutionary conservation of proteasome alpha subunits, an anti-human proteasome antibody was able to recognize proteasome subunits in these preparations by Western blotting, supporting the proposal that the activity of the ubiqutin-proteasome system is developmentally regulated in this nematode.
Resumo:
The brain is a complex system that, in the normal condition, has emergent properties like those associated with activity-dependent plasticity in learning and memory, and in pathological situations, manifests abnormal long-term phenomena like the epilepsies. Data from our laboratory and from the literature were classified qualitatively as sources of complexity and emergent properties from behavior to electrophysiological, cellular, molecular, and computational levels. We used such models as brainstem-dependent acute audiogenic seizures and forebrain-dependent kindled audiogenic seizures. Additionally we used chemical OF electrical experimental models of temporal lobe epilepsy that induce status epilepticus with behavioral, anatomical, and molecular sequelae such as spontaneous recurrent seizures and long-term plastic changes. Current Computational neuroscience tools will help the interpretation. storage, and sharing of the exponential growth of information derived from those studies. These strategies are considered solutions to deal with the complexity of brain pathologies such as the epilepsies. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Immunological systems have been an abundant inspiration to contemporary computer scientists. Problem solving strategies, stemming from known immune system phenomena, have been successfully applied to chall enging problems of modem computing. Simulation systems and mathematical modeling are also beginning use to answer more complex immunological questions as immune memory process and duration of vaccines, where the regulation mechanisms are not still known sufficiently (Lundegaard, Lund, Kesmir, Brunak, Nielsen, 2007). In this article we studied in machina a approach to simulate the process of antigenic mutation and its implications for the process of memory. Our results have suggested that the durability of the immune memory is affected by the process of antigenic mutation.and by populations of soluble antibodies in the blood. The results also strongly suggest that the decrease of the production of antibodies favors the global maintenance of immune memory.
Resumo:
Background and purpose: Apart from the central nervous system parasitic invasion in chagasic immunodeficient patients and strokes due to heart lesions provoked by the disease, the typical neurological syndromes of the chronic phase of Chagas` disease (CD) have not yet been characterized, although involvement of the peripheral nervous system has been well documented. This study aims at investigating whether specific signs of central nervous system impairment might be associated with the disease. Methods: Twenty-seven patients suffering from the chronic form of Chagas` disease (CCD) and an equal number of controls matched for sex, age, educational and socio-cultural background, and coming from the same geographical regions, were studied using neurological examinations, magnetic resonance images, and electroencephalographic frequency analysis. Results: Nineteen patients were at the stage A of the cardiac form of the disease (without documented structural lesions or heart failure). Dizziness, brisk reflexes, and ankle and knee areflexia were significantly more prevalent in the patients than in the controls. The significant findings in quantitative electroencephalogram were an increase in the theta relative power and a decrease in the theta dominant frequency at temporal-occipital derivations. Subcortical, white matter demyelination was associated with diffuse theta bursts and theta-delta slowing in two patients. Conclusions: Our findings suggest a discrete and unspecific functional cortical disorder and possible white matter lesions in CD. The focal nervous system abnormalities in CD documented here did not seem to cause significant functional damage or severely alter the patient`s quality of life. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Purpose: To quantitatively evaluate changes induced by the application of a femoral blood-pressure cuff (BPC) on run-off magnetic resonance angiography (MRA). which is a method generally previously proposed to reduce venous contamination in the leg. Materials and Methods: This study was Health Insurance Portability and Accountability Act (HIPAA)- and Institutional Review Board (IRB)-compliant, We used time-resolved gradient-echo gadolinium (Gd)-enhanced MRA to measure BPC effects on arterial, venous, and soft-tissue enhancement. Seven healthy volunteers (six men) were studied with the BPC applied at the mid-femoral level unilaterally using a 1.5T MR system after intravenous injection of Gd-BOPTA. Different statistical tools were used such as the Wilcoxon signed rank test and a cubic smoothing spline fit. Results: We found that BPC application induces delayed venous filling (as previously described), but also induces significant decreases in arterial inflow, arterial enhancement, vascular-soft tissue contrast, and delayed peak enhancement (which have not been previously measured). Conclusion: The potential benefits from using a BPC for run-off MRA must be balanced against the potential pitfalls, elucidated by our findings.
Resumo:
Gene expression profiling by cDNA microarrays during murine thymus ontogeny has contributed to dissecting the large-scale molecular genetics of T cell maturation. Gene profiling, although useful for characterizing the thymus developmental phases and identifying the differentially expressed genes, does not permit the determination of possible interactions between genes. In order to reconstruct genetic interactions, on RNA level, within thymocyte differentiation, a pair of microarrays containing a total of 1,576 cDNA sequences derived from the IMAGE MTB library was applied on samples of developing thymuses (14-17 days of gestation). The data were analyzed using the GeneNetwork program. Genes that were previously identified as differentially expressed during thymus ontogeny showed their relationships with several other genes. The present method provided the detection of gene nodes coding for proteins implicated in the calcium signaling pathway, such as Prrg2 and Stxbp3, and in protein transport toward the cell membrane, such as Gosr2. The results demonstrate the feasibility of reconstructing networks based on cDNA microarray gene expression determinations, contributing to a clearer understanding of the complex interactions between genes involved in thymus/thymocyte development.
Resumo:
In temporal lobe epilepsy (TLE) seizures, tonic or clonic motor behaviors (TCB) are commonly associated with automatisms, versions, and vocalizations, and frequently occur during secondary generalization. Dystonias are a common finding and appear to be associated with automatisms and head deviation, but have never been directly linked to generalized tonic or clonic behaviors. The objective of the present study was to assess whether dystonias and TCB are coupled in the same seizure or are associated in an antagonistic and exclusive pattern. Ninety-one seizures in 55 patients with TLE due to mesial temporal sclerosis were analyzed. Only patients with postsurgical seizure outcome of Engel class I or II were included. Presence or absence of dystonia and secondary generalization was recorded. Occurrence of dystonia and occurrence of bilateral tonic or clonic behaviors were negatively correlated. Dystonia and TCB may be implicated in exclusive, non-coincidental, or even antagonistic effects or phenomena in TLE seizures. A neural network related to the expression of one behavioral response (e.g., basal ganglia activation and dystonia) might theoretically ""displace"" brain activation or disrupt the synchronism of another network implicated in pathological circuit reverberation and seizure expression. The involvement of basal ganglia in the blockade of convulsive seizures has long been observed in animal models. The question is: Do dystonia and underlying basal ganglia activation represent an attempt of the brain to block imminent secondary generalization? (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Ethnopharmacological relevance: The essential oil (EO) from Cymbopogon citratus (DC) Stapf is reported to have a wide range of biological activities and is widely used in traditional medicine as an infusion or decoction. However, despite this widely use, there are few controlled studies confirming its biological activity in central nervous system. Materials and methods: The anxiolytic-like activity of the EO was investigated in light/dark box (LDB) and marble-burying test (MBT) and the antidepressant activity was investigated in forced-swimming test (FST) in mice. Flumazenil, a competitive antagonist of benzodiazepine binding and the selective 5-HT(1A) receptor antagonist WAY100635 was used in experimental procedures to determine the action mechanism of EO. To exclude any false positive results in experimental procedures, mice were submitted to the rota-rod test. We also quantified some neurotransmitters at specific brain regions after EO oral acute treatment. Results: The present work found anxiolytic-like activity of the EO at the dose of 10 mg/kg in a LDB. Flumazenil, but not WAY100635, was able to reverse the effect of the EO in the LOB, indicating that the EO activity occurs via the GABA(A) receptor-benzodiazepine complex. Only at higher doses did the EO potentiate diethyl-ether-induced sleeping time in mice. In the FST and MBT, EO showed no effect. Finally, the increase in time spent in the light chamber, demonstrated by concomitant treatment with ineffective doses of diazepam (DZP) and the EO, revealed a synergistic effect of the two compounds. The lack of activity after long-term treatment in the LDB test might be related to tolerance induction, even in the DZP-treated group. Furthermore, there were no significant differences between groups after either acute or repeated treatments with the EO in the rota-rod test. Neurochemical evaluation showed no amendments in neurotransmitter levels evaluated in cortex, striatum, pons, and hypothalamus. Conclusions: The results corroborate the use of Cymbopogon citratus in folk medicine and suggest that the anxiolytic-like effect of its EO is mediated by the GABA(A) receptor-benzodiazepine complex. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The resin phase of dental composites is mainly composed of combinations of dimethacrylate comonomers, with final polymeric network structure defined by monomer type/reactivity and degree of conversion. This fundamental study evaluates how increasing concentrations of the flexible triethylene glycol dimethacrylate (TEGDMA) influences void formation in bisphenol A diglycidyl dimethacrylate (BisGMA) co-polymerizations and correlates this aspect of network structure with reaction kinetic parameters and macroscopic volumetric shrinkage. Photopolymerization kinetics was followed in real-time by a near-infrared (NIR) spectroscopic technique, viscosity was assessed with a viscometer, volumetric shrinkage was followed with a linometer, free volume formation was determined by positron annihilation lifetime spectroscopy (PALS) and the sol-gel composition was determined by extraction with dichloromethane followed by (1)H NMR analysis. Results show that, as expected, volumetric shrinkage increases with TEGDMA concentration and monomer conversion. Extraction/(1)H NMR studies show increasing participation of the more flexible TEGDMA towards the limiting stages of conversion/crosslinking development. As the conversion progresses, either based on longer irradiation times or greater TEGDMA concentrations, the network becomes more dense, which is evidenced by the decrease in free volume and weight loss after extraction in these situations. For the same composition (BisGMA/TEGDMA 60-40 mol%) light-cured for increasing periods of time (from 10 to 600 s), free volume decreased and volumetric shrinkage increased, in a linear relationship with conversion. However, the correlation between free volume and macroscopic volumetric shrinkage was shown to be rather complex for variable compositions exposed for the same time (600 s). The addition of TEGDMA decreases free-volume up to 40 mol% (due to increased conversion), but above that concentration, in spite of the increase in conversion/crosslinking, free volume pore size increases due to the high concentration of the more flexible monomer. In those cases, the increase in volumetric shrinkage was due to higher functional group concentration, in spite of the greater free volume. Therefore, through the application of the PALS model, this study elucidates the network formation in dimethacrylates commonly used in dental materials. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
For a two layered long wave propagation, linearized governing equations, which were derived earlier from the Euler equations of mass and momentum assuming negligible friction and interfacial mixing are solved analytically using Fourier transform. For the solution, variations of upper layer water level is assumed to be sinosoidal having known amplitude and variations of interface level is solved. As the governing equations are too complex to solve it analytically, density of upper layer fluid is assumed as very close to the density of lower layer fluid to simplify the lower layer equation. A numerical model is developed using the staggered leap-forg scheme for computation of water level and discharge in one dimensional propagation having known amplitude for the variations of upper layer water level and interface level to be solved. For the numerical model, water levels (upper layer and interface) at both the boundaries are assumed to be known from analytical solution. Results of numerical model are verified by comparing with the analytical solutions for different time period. Good agreements between analytical solution and numerical model are found for the stated boundary condition. The reliability of the developed numerical model is discussed, using it for different a (ratio of density of fluid in the upper layer to that in the lower layer) and p (ratio of water depth in the lower layer to that in the upper layer) values. It is found that as ‘CX’ increases amplification of interface also increases for same upper layer amplitude. Again for a constant lower layer depth, as ‘p’ increases amplification of interface. also increases for same upper layer amplitude.
Resumo:
The nervous system of temnocephalid flatworms consists of the brain and three pairs of longitudinal connectives extending into the trunk and tail. The connectives are crosslinked by an invariant number of regularly spaced commissures. Branches of the connectives innervate the tentacles of the head and the sucker organ in the tail. A set of nerve rings encircling the pharynx and connected to the brain and connectives constitute the pharyngeal nervous system. The nervous system is formed during early embryogenesis when the embryo represents a multilayered mesenchymal mass of cells. Gastrulation and the formation of separate epithelial germ layers that characterize most other animal groups are absent. The brain arises as a bilaterally symmetric condensation of postmitotic cells in the deep layers of the anterior region of the embryonic mesenchyme. The pattern of axon outgrowth, visualized by labeling with anti-acetylated tubulin (acTub) antibody, shows marked differences from the pattern observed in other flatworm taxa. in regard to the number of neurons that express the acTub epitope. Acetylated tubulin is only expressed in neurons that form long axon tracts. In other flatworm species, such as the typhloplanoid Mesostoma and the polyclad Imogine, which were investigated by us with the acTub antibody (Hartenstein and Ehlers [2000] Dev. Genes Evol. 210:399-415; Younossi-Hartenstein and Hartenstein [2000] Dev. Genes Evol. 210:383-398), only a small number of pioneer neurons become acTub positive during the embryonic period. By contrast, in temnocephalids, most, if not all, neurons express acTub and form long, large-diameter axons. Initially, the brain commissure, pharyngeal nerve ring, and the connectives are laid down. Commissural tracts and tentacle nerves branching off the connectives appear later. We speculate that the precocious differentiation of the nervous system may be related to the fact that temnocephalids move by muscle action, and possess a massive and complex muscular system when they hatch. In addition, they have muscular specializations such as the anterior tentacles and the posterior sucker that are used as soon as they hatch. By contrast, juveniles of Mesostoma and larvae of polyclads move predominantly by ciliary action that may not require a complex neural circuitry for coordination. (C) 2001 Wiley-Liss, Inc.
Resumo:
The architectonic features of the thalamic ventrobasal complex (Vb) of two species of Megachiropteran (Grey-headed flying fox, Pteropus poliocephalus, and the Eastern tube-nosed bat, Nyctimene robinsoni) are compared with those of a Microchiropteran (Australian ghost bat, Macroderma gigas). The somatosensory system was chosen for comparison as it represents a sensory system that has undergone analogous modifications in both Chiropteran lineages (the evolution of the wing). The components of Vb were examined as there are taxon-specific features in this region of the brain. Within the Megachiropteran Vb, four subnuclei were recognized: the ventral posterior medial (VPM), the ventral posterior lateral (VPL), the ventral posterior inferior (VPI), and the basal ventral medial (VMb). In the ghost bat only VPM and VPL were identified with certainty. No VPI was evident in the ghost bat, however a putative VMb was observed. Vb of the ghost bat also lacked the arcuate lamina, which distinguishes VPM from VPL in the Megachiropterans and many other mammals. These taxon-specific differences lend support to the proposal that the order Chiroptera has a diphyletic origin.
Resumo:
In this study, we have compared the effector functions and fate of a number of human CTL clones in vitro or ex vivo following contact with variant peptides presented either on the cell surface or in a soluble multimeric format. In the presence of CD8 coreceptor binding, there is a good correlation between TCR signaling, killing of the targets, and Fast-mediated CTL apoptosis. Blocking CD8 binding using (alpha3 domain mutants of MHC class I results in much reduced signaling and reduced killing of the targets. Surprisingly, however, Fast expression is induced to a similar degree on these CTLs, and apoptosis of CTL is unaffected. The ability to divorce these events may allow the deletion of antigen-specific and pathological CTL populations without the deleterious effects induced by full CTL activation.