811 resultados para Collaborative robots
Resumo:
Multiple robot, single operator scenarios suppose a challenge in terms of human factors. Two relevant issues are keeping the situational awareness and managing the workload of operators. In order to address these problems, this work analyses the management of information and commands in multi-robot missions. About the information, this paper proposes a selection based on mission and operator states. Regarding the commands, this work reflects about the levels of automation and the methods of commanding.
Resumo:
Objective: To compare the resource implications and short term outcomes of extracorporeal membrane oxygenation and conventional management for term babies with severe respiratory failure.
Resumo:
In 1995, the National Library of Medicine (NLM) and the Public Health Service (PHS) recommended that special attention be given to the information needs of unaffiliated public health professionals. In response, the National Network of Libraries of Medicine (NN/LM) Greater Midwest Region initiated a collaborative outreach program for public health professionals working in rural east and central Iowa. Five public health agencies were provided equipment, training, and support for accessing the Internet. Key factors in the success of this project were: (1) the role of collaborating agencies in the implementation and ongoing success of information access outreach projects; (2) knowledge of the socio-cultural factors that influence the information-seeking habits of project participants (public health professionals); and (3) management of changing or varying technological infrastructures. Working with their funding, personnel from federal, state, and local governments enhanced the information-seeking skills of public health professionals in rural eastern and central Iowa communities.
Resumo:
El control seguro y efectivo de las malas hierbas según los principios establecidos por la Agricultura de Precisión requiere una tecnología específica, avanzada y de coste asumible dentro de los márgenes de beneficio. El uso de plataformas móviles autónomas tanto terrestres como aéreas equipadas con sistemas de percepción innovadores, sistemas inteligentes de toma de decisión y herramientas que permitan la aplicación precisa de los tratamientos herbicidas, reduce el coste asociado a la operación así como los potenciales daños ambientales y el riesgo para los agricultores. Varios son los grupos internacionales de investigación dedicados al desarrollo de tecnologías basadas en sistemas robóticos capaces de optimizar las operaciones complejas implicadas en este tipo de tratamientos de precisión. El desarrollo de sistemas autónomos de ayuda al tratamiento preciso, tanto de cultivos extensivos (malas hierbas) como de leñosos, es el objetivo principal del proyecto RHEA (Robot Fleets for Highly Effective Agriculture and Forestry Management), financiado por el 7º Programa Marco de la CE y dirigido a minimizar los insumos (agroquímicos, combustible, etc.) a la vez que garantizar la calidad y seguridad del producto así como cubrir totalmente el campo independientemente del tamaño que éste tenga. RHEA propone utilizar una flota de robots pequeños/medianos tanto aéreos como terrestres para la inspección/monitorización y posterior aplicación de fitosanitarios, lo que presenta múltiples ventajas frente al tratamiento basado en la habitual máquina de mayores dimensiones y más tradicional. Entre otras, una flota de robots de tamaño pequeño/mediano reduce el impacto sobre la compactación del suelo e interactúa de un modo más seguro con los operarios, ya que la detección e interacción se puede distribuir en varios sistemas de detección y gestión de fallos como los propuestos en la presente tesis. El trabajo de investigación presentado en esta tesis se ha desarrollado dentro de este proyecto europeo y está relacionado con el diseño, desarrollo y evaluación del nivel más alto de la arquitectura RHEA, en otras palabras, con los tres aspectos fundamentales para conseguir que los robots de la flota ejecuten el trabajo eficientemente y sin intervención humana, es decir, con la planificación, la supervisión y la gestión completa e integrada de las tareas de inspección y tratamiento...
Resumo:
Comunicación presentada en el I Congrés Català d’Intel·ligència Artificial, Tarragona, Octubre de 1998.
Resumo:
Robotics is an emerging field with great activity. Robotics is a field that presents several problems because it depends on a large number of disciplines, technologies, devices and tasks. Its expansion from perfectly controlled industrial environments toward open and dynamic environment presents a many new challenges. New uses are, for example, household robots or professional robots. To facilitate the low cost, rapid development of robotic systems, reusability of code, its medium and long term maintainability and robustness are required novel approaches to provide generic models and software systems who develop paradigms capable of solving these problems. For this purpose, in this paper we propose a model based on multi-agent systems inspired by the human nervous system able to transfer the control characteristics of the biological system and able to take advantage of the best properties of distributed software systems. Specifically, we model the decentralized activity and hormonal variation.
Resumo:
The robotics is one of the most active areas. We also need to join a large number of disciplines to create robots. With these premises, one problem is the management of information from multiple heterogeneous sources. Each component, hardware or software, produces data with different nature: temporal frequencies, processing needs, size, type, etc. Nowadays, technologies and software engineering paradigms such as service-oriented architectures are applied to solve this problem in other areas. This paper proposes the use of these technologies to implement a robotic control system based on services. This type of system will allow integration and collaborative work of different elements that make up a robotic system.
Resumo:
Paper submitted to ICERI2013, the 6th International Conference of Education, Research and Innovation, Seville (Spain), November 18-20, 2013.
Resumo:
Humans and machines have shared the same physical space for many years. To share the same space, we want the robots to behave like human beings. This will facilitate their social integration, their interaction with humans and create an intelligent behavior. To achieve this goal, we need to understand how human behavior is generated, analyze tasks running our nerves and how they relate to them. Then and only then can we implement these mechanisms in robotic beings. In this study, we propose a model of competencies based on human neuroregulator system for analysis and decomposition of behavior into functional modules. Using this model allow separate and locate the tasks to be implemented in a robot that displays human-like behavior. As an example, we show the application of model to the autonomous movement behavior on unfamiliar environments and its implementation in various simulated and real robots with different physical configurations and physical devices of different nature. The main result of this study has been to build a model of competencies that is being used to build robotic systems capable of displaying behaviors similar to humans and consider the specific characteristics of robots.
Resumo:
This paper presents a new dynamic visual control system for redundant robots with chaos compensation. In order to implement the visual servoing system, a new architecture is proposed that improves the system maintainability and traceability. Furthermore, high performance is obtained as a result of parallel execution of the different tasks that compose the architecture. The control component of the architecture implements a new visual servoing technique for resolving the redundancy at the acceleration level in order to guarantee the correct motion of both end-effector and joints. The controller generates the required torques for the tracking of image trajectories. However, in order to guarantee the applicability of this technique, a repetitive path tracked by the robot-end must produce a periodic joint motion. A chaos controller is integrated in the visual servoing system and the correct performance is observed in low and high velocities. Furthermore, a method to adjust the chaos controller is proposed and validated using a real three-link robot.
Resumo:
Virtual and remote laboratories (VRLs) are e-learning resources that enhance the accessibility of experimental setups providing a distance teaching framework which meets the student's hands-on learning needs. In addition, online collaborative communication represents a practical and a constructivist method to transmit the knowledge and experience from the teacher to students, overcoming physical distance and isolation. This paper describes the extension of two open source tools: (1) the learning management system Moodle, and (2) the tool to create VRLs Easy Java Simulations (EJS). Our extension provides: (1) synchronous collaborative support to any VRL developed with EJS (i.e., any existing VRL written in EJS can be automatically converted into a collaborative lab with no cost), and (2) support to deploy synchronous collaborative VRLs into Moodle. Using our approach students and/or teachers can invite other users enrolled in a Moodle course to a real-time collaborative experimental session, sharing and/or supervising experiences at the same time they practice and explore experiments using VRLs.
Resumo:
Camera traps have become a widely used technique for conducting biological inventories, generating a large number of database records of great interest. The main aim of this paper is to describe a new free and open source software (FOSS), developed to facilitate the management of camera-trapped data which originated from a protected Mediterranean area (SE Spain). In the last decade, some other useful alternatives have been proposed, but ours focuses especially on a collaborative undertaking and on the importance of spatial information underpinning common camera trap studies. This FOSS application, namely, “Camera Trap Manager” (CTM), has been designed to expedite the processing of pictures on the .NET platform. CTM has a very intuitive user interface, automatic extraction of some image metadata (date, time, moon phase, location, temperature, atmospheric pressure, among others), analytical (Geographical Information Systems, statistics, charts, among others), and reporting capabilities (ESRI Shapefiles, Microsoft Excel Spreadsheets, PDF reports, among others). Using this application, we have achieved a very simple management, fast analysis, and a significant reduction of costs. While we were able to classify an average of 55 pictures per hour manually, CTM has made it possible to process over 1000 photographs per hour, consequently retrieving a greater amount of data.
Control and Guidance of Low-Cost Robots via Gesture Perception for Monitoring Activities in the Home
Resumo:
This paper describes the development of a low-cost mini-robot that is controlled by visual gestures. The prototype allows a person with disabilities to perform visual inspections indoors and in domestic spaces. Such a device could be used as the operator's eyes obviating the need for him to move about. The robot is equipped with a motorised webcam that is also controlled by visual gestures. This camera is used to monitor tasks in the home using the mini-robot while the operator remains quiet and motionless. The prototype was evaluated through several experiments testing the ability to use the mini-robot’s kinematics and communication systems to make it follow certain paths. The mini-robot can be programmed with specific orders and can be tele-operated by means of 3D hand gestures to enable the operator to perform movements and monitor tasks from a distance.