962 resultados para Collaborative enterprise network
Resumo:
Introduction: The field of Connectomic research is growing rapidly, resulting from methodological advances in structural neuroimaging on many spatial scales. Especially progress in Diffusion MRI data acquisition and processing made available macroscopic structural connectivity maps in vivo through Connectome Mapping Pipelines (Hagmann et al, 2008) into so-called Connectomes (Hagmann 2005, Sporns et al, 2005). They exhibit both spatial and topological information that constrain functional imaging studies and are relevant in their interpretation. The need for a special-purpose software tool for both clinical researchers and neuroscientists to support investigations of such connectome data has grown. Methods: We developed the ConnectomeViewer, a powerful, extensible software tool for visualization and analysis in connectomic research. It uses the novel defined container-like Connectome File Format, specifying networks (GraphML), surfaces (Gifti), volumes (Nifti), track data (TrackVis) and metadata. Usage of Python as programming language allows it to by cross-platform and have access to a multitude of scientific libraries. Results: Using a flexible plugin architecture, it is possible to enhance functionality for specific purposes easily. Following features are already implemented: * Ready usage of libraries, e.g. for complex network analysis (NetworkX) and data plotting (Matplotlib). More brain connectivity measures will be implemented in a future release (Rubinov et al, 2009). * 3D View of networks with node positioning based on corresponding ROI surface patch. Other layouts possible. * Picking functionality to select nodes, select edges, get more node information (ConnectomeWiki), toggle surface representations * Interactive thresholding and modality selection of edge properties using filters * Arbitrary metadata can be stored for networks, thereby allowing e.g. group-based analysis or meta-analysis. * Python Shell for scripting. Application data is exposed and can be modified or used for further post-processing. * Visualization pipelines using filters and modules can be composed with Mayavi (Ramachandran et al, 2008). * Interface to TrackVis to visualize track data. Selected nodes are converted to ROIs for fiber filtering The Connectome Mapping Pipeline (Hagmann et al, 2008) processed 20 healthy subjects into an average Connectome dataset. The Figures show the ConnectomeViewer user interface using this dataset. Connections are shown that occur in all 20 subjects. The dataset is freely available from the homepage (connectomeviewer.org). Conclusions: The ConnectomeViewer is a cross-platform, open-source software tool that provides extensive visualization and analysis capabilities for connectomic research. It has a modular architecture, integrates relevant datatypes and is completely scriptable. Visit www.connectomics.org to get involved as user or developer.
Resumo:
Report on a review of the Central Procurement Enterprise (CPE) of the Iowa Department of Administrative Services for the period July 1, 2009 through March 31, 2013
Resumo:
Report on the Iowa Communications Network for the year ended June 30, 2013
Resumo:
Audit report on the Iowa Communications Network (ICN) for the year ended June 30, 2007
Resumo:
Audit report on the Iowa Communications Network (ICN) for the year ended June 30, 2005
Resumo:
Audit report on the Iowa Communications Network (ICN) for the year ended June 30, 2005
Online teaching of inflammatory skin pathology by a French-speaking International University Network
Resumo:
INTRODUCTION: Developments in technology, web-based teaching and whole slide imaging have broadened the teaching horizon in anatomic pathology. Creating online learning material including many types of media such as radiologic images, whole slides, videos, clinical and macroscopic photographs, is now accessible to most universities. Unfortunately, a major limiting factor to maintain and update the learning material is the amount of resources needed. In this perspective, a French-national university network was initiated in 2011 to build joint online teaching modules consisting of clinical cases and tests. The network has since expanded internationally to Québec, Switzerland and Ivory Coast. METHOD: One of the first steps of the project was to build a learning module on inflammatory skin pathology for interns and residents in pathology and dermatology. A pathology resident from Québec spent 6 weeks in France and Switzerland to develop the contents and build the module on an e-learning Moodle platform under the supervision of two dermatopathologists. The learning module contains text, interactive clinical cases, tests with feedback, virtual slides, images and clinical photographs. For that module, the virtual slides are decentralized in 2 universities (Bordeaux and Paris 7). Each university is responsible of its own slide scanning, image storage and online display with virtual slide viewers. RESULTS: The module on inflammatory skin pathology includes more than 50 web pages with French original content, tests and clinical cases, links to over 45 virtual images and more than 50 microscopic and clinical photographs. The whole learning module is being revised by four dermatopathologists and two senior pathologists. It will be accessible to interns and residents in the spring of 2014. The experience and knowledge gained from that work will be transferred to the next international resident whose work will be aimed at creating lung and breast pathology learning modules. CONCLUSION: The challenges of sustaining a project of this scope are numerous. The technical aspect of whole-slide imaging and storage needs to be developed by each university or group. The content needs to be regularly updated and its accuracy reviewed by experts in each individual domain. The learning modules also need to be promoted within the academic community to ensure maximal benefit for trainees. A collateral benefit of the project was the establishment of international partnerships between French-speaking universities and pathologists with the common goal of promoting pathology education through the use of multi-media technology including whole slide imaging.
Resumo:
AbstractBACKGROUND: Scientists have been trying to understand the molecular mechanisms of diseases to design preventive and therapeutic strategies for a long time. For some diseases, it has become evident that it is not enough to obtain a catalogue of the disease-related genes but to uncover how disruptions of molecular networks in the cell give rise to disease phenotypes. Moreover, with the unprecedented wealth of information available, even obtaining such catalogue is extremely difficult.PRINCIPAL FINDINGS: We developed a comprehensive gene-disease association database by integrating associations from several sources that cover different biomedical aspects of diseases. In particular, we focus on the current knowledge of human genetic diseases including mendelian, complex and environmental diseases. To assess the concept of modularity of human diseases, we performed a systematic study of the emergent properties of human gene-disease networks by means of network topology and functional annotation analysis. The results indicate a highly shared genetic origin of human diseases and show that for most diseases, including mendelian, complex and environmental diseases, functional modules exist. Moreover, a core set of biological pathways is found to be associated with most human diseases. We obtained similar results when studying clusters of diseases, suggesting that related diseases might arise due to dysfunction of common biological processes in the cell.CONCLUSIONS: For the first time, we include mendelian, complex and environmental diseases in an integrated gene-disease association database and show that the concept of modularity applies for all of them. We furthermore provide a functional analysis of disease-related modules providing important new biological insights, which might not be discovered when considering each of the gene-disease association repositories independently. Hence, we present a suitable framework for the study of how genetic and environmental factors, such as drugs, contribute to diseases.AVAILABILITY: The gene-disease networks used in this study and part of the analysis are available at http://ibi.imim.es/DisGeNET/DisGeNETweb.html#Download
Resumo:
BACKGROUND: Maternal-infant transmission of hepatitis B virus (HBV) during birth carries a high risk for chronic HBV infection in infants with frequent subsequent development of chronic disease. This can be efficiently prevented by early immunization of exposed newborns. The purpose of this study was to determine the compliance with official recommendations for prevention of perinatal HBV transmission in hepatitis B surface antigen (HBsAg) exposed infants. METHODS: Records of pregnant women at 4 sites in Switzerland, admitted for delivery in 2005 and 2006, were screened for maternal HBsAg testing. In HBsAg-exposed infants, recommended procedures (postnatal active and passive immunization, completion of immunization series, and serological success control) were checked. RESULTS: Of 27,131 women tested for HBsAg, 194 (0.73%) were positive with 196 exposed neonates. Of these neonates, 143 (73%) were enrolled and 141 (99%) received simultaneous active and passive HBV immunization within 24 hours of birth. After discharge, the HBV immunization series was completed in 83%. Only 38% of children were tested for anti-HBs afterwards and protective antibody values (>100 U/L) were documented in 27% of the study cohort. No chronically infected child was identified. Analysis of hospital discharge letters revealed significant quality problems. CONCLUSIONS: Intensified efforts are needed to improve the currently suboptimal medical care in HBsAg-exposed infants. We propose standardized discharge letters, as well as reminders to primary care physicians with precise instructions on the need to complete the immunization series in HBsAg-exposed infants and to evaluate success by determination of anti-HBs antibodies after the last dose.
Resumo:
The choice network revenue management (RM) model incorporates customer purchase behavioras customers purchasing products with certain probabilities that are a function of the offeredassortment of products, and is the appropriate model for airline and hotel network revenuemanagement, dynamic sales of bundles, and dynamic assortment optimization. The underlyingstochastic dynamic program is intractable and even its certainty-equivalence approximation, inthe form of a linear program called Choice Deterministic Linear Program (CDLP) is difficultto solve in most cases. The separation problem for CDLP is NP-complete for MNL with justtwo segments when their consideration sets overlap; the affine approximation of the dynamicprogram is NP-complete for even a single-segment MNL. This is in contrast to the independentclass(perfect-segmentation) case where even the piecewise-linear approximation has been shownto be tractable. In this paper we investigate the piecewise-linear approximation for network RMunder a general discrete-choice model of demand. We show that the gap between the CDLP andthe piecewise-linear bounds is within a factor of at most 2. We then show that the piecewiselinearapproximation is polynomially-time solvable for a fixed consideration set size, bringing itinto the realm of tractability for small consideration sets; small consideration sets are a reasonablemodeling tradeoff in many practical applications. Our solution relies on showing that forany discrete-choice model the separation problem for the linear program of the piecewise-linearapproximation can be solved exactly by a Lagrangian relaxation. We give modeling extensionsand show by numerical experiments the improvements from using piecewise-linear approximationfunctions.