951 resultados para Cognitive dysfunction syndrome
Resumo:
There are interactions between endothelin-1 (ET-1) and endothelial vascular injury in hyperhomocysteinemia (HHcy), but the underlying mechanisms are poorly understood. Here we evaluated the effects of HHcy on the endothelin system in rat carotid arteries. Vascular reactivity to ET-1 and ET(A) and ET(B) receptor antagonists was assessed in rings of carotid arteries from normal rats and those with HHcy. ET(A) and ET(B) receptor expression was assessed by mRNA (RT-PCR), immunohistochemistry and binding of [(125)I]-ET-1. HHcy enhanced ET-1-induced contractions of carotid rings with intact endothelium. Selective antagonism of ET(A) or ET(B) receptors produced concentration-dependent rightward displacements of ET-1 concentration response curves. Antagonism of ET(A) but not of ET(B) receptors abolished enhancement in HHcy tissues. ET(A) and ET(B) receptor gene expressions were not up-regulated. ET(A) receptor expression in the arterial media was higher in HHcy arteries. Contractions to big ET-1 served as indicators of endothelin-converting enzyme activity, which was decreased by HHcy, without reduction of ET-1 levels. ET-1-induced Rho-kinase activity, calcium release and influx were increased by HHcy. Pre-treatment with indomethacin reversed enhanced responses to ET-1 in HHcy tissues, which were reduced also by a thromboxane A(2) receptor antagonist. Induced relaxation was reduced by BQ788, absent in endothelium-denuded arteries and was decreased in HHcy due to reduced bioavailability of NO. Increased ET(A) receptor density plays a fundamental role in endothelial injury induced by HHcy. ET-1 activation of ET(A) receptors in HHcy changed the balance between endothelium-derived relaxing and contracting factors, favouring enhanced contractility. British Journal of Pharmacology (2009) 157, 568-580; doi:10.1111/j.1476-5381.2009.00165.x; published online 9 April 2009 This article is part of a themed section on Endothelium in Pharmacology. For a list of all articles in this section see the end of this paper, or visit: http://www3.interscience.wiley.com/journal/121548564/issueyear?year=2009.
Resumo:
Introduction. Erectile dysfunction (ED), as well as cardiovascular diseases (CVDs), is associated with endothelial dysfunction and increased levels of proinflammatory cytokines, such as tumor necrosis factor-alpha (TNF-alpha). Aim. We hypothesized that increased TNF-alpha levels impair cavernosal function. Methods. In vitro organ bath studies were used to measure cavernosal reactivity in mice infused with vehicle or TNF-alpha-(220 ng/kg/min) for 14 days. Gene expression of nitric oxide synthase isoforms was evaluated by real-time polymerase chain reaction. Results. Cavernosal strips from the TNF-alpha-infused mice displayed decreased nonadrenergic-noncholinergic (NANC)-induced relaxation (59.4 +/- 6.2 vs. control: 76.2 +/- 4.7; 16 Hz) compared with the control animals. These responses were associated with decreased gene expression of eNOS and nNOS (P < 0.05). Sympathetic-mediated, as well as phenylephrine (PE)-induced, contractile responses (PE-induced contraction; 1.32 +/- 0.06 vs. control: 0.9 +/- 0.09, mN) were increased in cavernosal strips from TNF-alpha-infused mice. Additionally, infusion of TNF-alpha increased cavernosal responses to endothelin-1 and endothelin receptor A subtype (ET(A)) receptor expression (P < 0.05) and slightly decreased tumor necrosis factor-alpha receptor 1 (TNFRI) expression (P=0.063). Conclusion. Corpora cavernosa from TNF-alpha-infused mice display increased contractile responses and decreased NANC nerve-mediated relaxation associated with decreased eNOS and nNOS gene expression. There changes may trigger ED and indicate that TNF-alpha plays a detrimental role in erectile function. Blockade of TNF-alpha actions may represent an alternative therapeutic approach for ED, especially in pathologic conditions associated with increased levels of this cytokine. Carneiro FS, Zemse S, Giachini FRC, Carneiro ZN, Lima W, Clinton Webb R, and Tostes RC. TNF-alpha infusion impairs corpora cavernosa reactivity. J Sex Med 2009;6(suppl 3):311-319.
Resumo:
The cavernosal tissue is highly responsive to endothelin-1 (ET-1), and penile smooth muscle cells not only respond to but also synthesize ET-1. Considering that ET-1 is directly involved in end-organ damage in salt-sensitive forms of hypertension, we hypothesized that activation of the ET-1/ET(A) receptor pathway contributes to erectile dysfunction (ED) associated with mineralocorticoid hypertension. Wistar rats were uninephrectomized and submitted to deoxycorticosterone acetate (DOCA)-salt treatment for 5 weeks. Control (Uni [uninephrectomized control]) animals were uninephrectomized and given tap water. Uni and DOCA-salt rats were simultaneously treated with vehicle or atrasentan (ET(A) receptor antagonist, 5 mg/Kg/day). Cavernosal reactivity to ET-1, phenylephrine (PE), ET(B) receptor agonist (IRL-1620) and electric field stimulation (EFS) were evaluated in vitro. Expression of ROCK alpha, ROCK beta, myosin phosphatase target subunit 1 (MYPT-1), and extracellular signal-regulated kinase 1/2 (ERK 1/2) were evaluated by western blot analysis. ET-1 and ET(A) receptor mRNA expression was evaluated by real-time reverse-transcriptase polymerase chain reaction. Voltage-dependent increase in intracavernosal pressure/mean arterial pressure (ICP/MAP) was used to evaluate erectile function in vivo. ET(A) receptor blockade prevents DOCA-salt-associated ED. Cavernosal strips from DOCA-salt rats displayed augmented preproET-1 expression, increased contractile responses to ET-1 and decreased relaxation to IRL-1620. Contractile responses induced by EFS and PE were enhanced in cavernosal tissues from DOCA-salt hypertensive rats. These functional changes were associated with increased activation of the RhoA/Rho-kinase and ERK 1/2 pathways. Treatment of rats with atrasentan completely prevented changes in cavernosal reactivity in DOCA-salt rats and restored the decreased ICP/MAP, completely preventing ED in DOCA-salt rats. Activation of the ET-1/ET(A) pathway contributes to mineralocorticoid hypertension-associated ED. ET(A) receptor blockade may represent an alternative therapeutic approach for ED associated with salt-sensitive hypertension and in pathological conditions where increased levels of ET-1 are present. Carneiro FS, Nunes KP, Giachini FRC, Lima VV, Carneiro ZN, Nogueira EF, Leite R, Ergul A, Rainey WE, Webb RC, and Tostes RC. Activation of the ET-1/ETA pathway contributes to erectile dysfunction associated with mineralocorticoid hypertension. J Sex Med **;**:**-**.
Resumo:
Altered activity of matrix metalloproteinases (MMPs) is implicated in the vascular remodeling of hypertension. We examined whether increased MMP-2 expression/activity plays a role in the vascular remodeling and dysfunction found in the two-kidney, one-clip (2K-1C) hypertension. Sham operated or 2K-1C hypertension rats were treated with doxycycline 30 mg/(kg day) (or vehicle). Systolic blood pressure was monitored weekly. After 8 weeks of treatment, aortic rings were isolated to assess endothelium-dependent and independent relaxations. Quantitative morphometry of structural changes, collagen, and elastin contents in the aortic wall were studied in hematoxylin/eosin, Sirius Red, and Orceine stained aortic sections, respectively. Aortic MMP-2 levels were determined by gelatin zymography and aortic MMP-2 proteolytic activity was measured using DQ gelatin as the substrate after MMP-2 was captured by a specific antibody and immobilized on a microplate. Aortic MMP-2/tissue inhibitor of metalloprotemases (TIMP)-2 mRNA levels were determined by real time RT-PCR. Doxycycline attenuated 2K-1C hypertension (215 +/- 8 mmHg versus 167 +/- 13 mmHg in 2K-1C rats and 2K-1C + doxy rats, respectively; P < 0.01) and prevented the 35% reduction in endothelium-dependent vasorelaxation found in 2K-1C rats. Doxycycline prevented the increases in media thickness, and was associated with lower media/lumen and cross-sectional areas (all P<0.01). Doxycycline also prevented excessive collagen and elastin deposition in the vascular wall. Increased MMP-2 and Pro-MMP-2 levels and MMP-2 activity were found in the aortas of 2K-1C rats (all P<0.05). A 21-fold increase (P<0.001) in the ratio of MMP-2/TIMP-2 mRNA expression was found in the 2K-1C group, whereas this ratio remained unaltered in 2K-1C+doxy rats. Our results suggest that MMP-2 plays a role in 2K-1C hypertension and its structural and functional vascular changes, which were attenuated by doxycycline. (C) 2007 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Introduction. Diabetes mellitus (DM) is a risk factor for erectile dysfunction (ED). Although type 2 DM is responsible for 90-95% diabetes cases, type 1 DM experimental models are commonly used to study diabetes-associated ED. Aim. Goto-Kakizaki (GK) rat model is relevant to ED studies since the great majority of patients with type 2 diabetes display mild deficits in glucose-stimulated insulin secretion, insulin resistance, and hyperglycemia. We hypothesized that GK rats display ED which is associated with decreased nitric oxide (NO) bioavailability. Methods. Wistar and GK rats were used at 10 and 18 weeks of age. Changes in the ratio of intracavernosal pressure/mean arterial pressure (ICP/MAP) after electrical stimulation of cavernosal nerve were determined in vivo. Cavernosal contractility was induced by electrical field stimulation (EFS) and phenylephrine (PE). In addition, nonadrenergic-noncholinergic (NANC)- and sodium nitroprusside (SNP)-induced relaxation were determined. Cavernosal neuronal nitric oxide synthase (nNOS) and endothelial nitric oxide synthase (eNOS) mRNA and protein expression were also measured. Main Outcome Measure. GK diabetic rats display ED associated with decreased cavernosal expression of eNOS protein. Results. GK rats at 10 and 18 weeks demonstrated impaired erectile function represented by decreased ICP/MAP responses. Ten-week-old GK animals displayed increased PE responses and no changes in EFS-induced contraction. Conversely, contractile responses to EFS and PE were decreased in cavernosal tissue from GK rats at 18 weeks of age. Moreover, GK rats at 18 weeks of age displayed increased NANC-mediated relaxation, but not to SNP. In addition, ED was associated with decreased eNOS protein expression at both ages. Conclusion. Although GK rats display ED, they exhibit changes in cavernosal reactivity that would facilitate erectile responses. These results are in contrast to those described in other experimental diabetes models. This may be due to compensatory mechanisms in cavernosal tissue to overcome restricted pre-penile arterial blood supply or impaired veno-occlusive mechanisms. Carneiro FS, Giachini FRC, Carneiro ZN, Lima VV, Ergul A, Webb RC, and Tostes RC. Erectile dysfunction in young non-obese type II diabetic Goto-Kakizaki rats is associated with decreased eNOS phosphorylation at Ser1177. J Sex Med 2010;7:3620-3634.
Resumo:
Objective: To investigate the role of regulatory T cells in the modulation of long-term immune dysfunction during experimental sepsis. It is well established that sepsis predisposes to development of a pronounced immunosuppression. Nevertheless, the mechanisms underlying the immune dysfunction after sepsis are still not well understood. Design: Prospective experimental study. Setting: University research laboratory. Interventions: Wild-type mice underwent cecal ligation and puncture and were treated with antibiotic during 3 days after surgery. On days 1, 7, or 15 after cecal ligation and puncture, the frequency of regulatory T cells, proliferation of CD4(+) T cells and bacterial counts were evaluated. Fifteen days after cecal ligation and puncture, surviving mice underwent secondary pulmonary infection by intranasal inoculation of nonlethal dose of Legionella pneumophila. Some mice received agonistic glucocorticoid-induced tumor necrosis factor receptor antibody (DTA-1) before induction of secondary infection. Measurements and Main Results: Mice surviving cecal ligation and puncture showed a markedly increased frequency of regulatory T cells in thymus and spleen, which was associated with reduced proliferation of CD4(+) T cells. Fifteen days after cecal ligation and puncture, all sepsis-surviving mice succumbed to nonlethal injection of L. pneumophila. Treatment of mice with DTA-1 antibody reduced frequency of regulatory T cells, restored CD4(+) T cell proliferation, reduced the levels of bacteria in spleen, and markedly improved survival of L. pneumophila infection. Conclusion: These findings suggest that regulatory T cells play an important role in the progression and establishment of immune dysfunction observed in experimental sepsis. (Crit Care Med 2010; 38: 1718-1725)
Resumo:
Sex-associated differences in hypertension have been observed repeatedly in epidemiological studies; however, the mechanisms conferring vascular protection to females are not totally elucidated. Sex-related differences in intracellular Ca(2+) handling or, more specifically, in mechanisms that regulate Ca(2+) entry into vascular smooth muscle cells have been identified as players in sex-related differences in hypertension-associated vascular dysfunction. Recently, new signalling components that regulate Ca(2+) influx, in conditions of intracellular store depletion, were identified: STIM1 (stromal interaction molecule 1), which works as an intracellular Ca(2+) sensor; and Orai1, which is a component of the CRAC (Ca(2+) release-activated Ca(2+)) channels. Together, these proteins reconstitute store-operated Ca(2+) channel function. Disturbances in STIM1/Orai1 signalling have been implicated in pathophysiological conditions, including hypertension. In the present article, we analyse evidence for sex-related differences in Ca(2+) handling and propose a new hypothesis where sex-related differences in STIM/Orai signalling may contribute to hypertension-associated vascular differences between male and female subjects.
Resumo:
Dysfunction in the hypothalamic GABAergic system has been implicated in panic syndrome in humans. Furthermore, several studies have implicated the hypothalamus in the elaboration of pain modulation. Panic-prone states are able to be experimentally induced in laboratory animals to study this phenomenon. The aim of the present work was to investigate the involvement of medial hypothalamic nuclei in the organization of panic-like behaviour and the innate fear-induced oscillations of nociceptive thresholds. The blockade of GABA(A) receptors in the neuronal substrates of the ventromedial. or dorsomedial hypothalamus was followed by elaborated defensive panic-like reactions. Moreover, innate fear-induced antinociception was consistently elicited after the escape behaviour. The escape responses organized by the dorsomedial and ventromedial hypothalamic nuclei were characteristically more elaborated, and a remarkable exploratory behaviour was recorded during GABA(A) receptor blockade in the medial hypothalamus. The motor characteristic of the elaborated defensive escape behaviour and the patterns of defensive alertness and defensive immobility induced by microinjection of the bicuculline either into the dorsomedial. or into the ventromedial hypothalamus were very similar. This was followed by the same pattern of innate fear-induced antinociceptive response that lasted approximately 40 min after the elaborated defensive escape reaction in both cases. These findings suggest that dysfunction of the GABA-mediated neuronal system in the medial hypothalamus causes panic-like responses in laboratory animals, and that the elaborated escape behaviour organized in both dorsomedial and ventromedial hypothalamic nuclei are followed by significant innate-fear-induced antinociception. Our findings indicate that the GABA(A) receptor of dorsomedial and ventromedial hypothalamic nuclei are critically involved in the modulation of panic-like behaviour. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Background: Enhanced cardiac matrix metalloproteinase activity (MMPs) has been associated with ventricular remodeling and cardiac dysfunction. It is unknown whether MMPs contribute to systolic/diastolic dysfunction and compensatory remodeling in 2-kidney, 1-clip (2K1C) hypertensive rats. To test this hypothesis, we used 2K1C rats after 2 weeks of surgery treated or not with a nonspecific inhibitor of MMPs (doxycycline). Methods and Results: We found that blood pressure and +/-dP/dt increased in 2K1C rats compared with sham groups, and these parameters were attenuated by doxycycline treatment (P < .05). Doxycycline also reversed cardiac hypertrophy observed in 2K1C rats (P < .05). Hypertensive rats showed increased MMP-2 levels in zymograms and in the tissue by immunofluorescence (P < .05) compared with sham groups. Increased total gelatinolytic activity was observed in untreated 2K1C rats when compared with sham groups (P < .05). Doxycycline decreased total gelatinolytic activity in 2K1C rats to control levels (P < .05). Conclusion: An imbalance in gelatinolytic activity, with increased MMP-2 levels and activity underlies the development of morphological and functional alterations found in the compensatory hypertrophy observed in 2K1C hearts. Because function and structure were restored by doxycycline, the inhibition of MMPs or their modulation may provide beneficial effects for therapeutic intervention in cardiac hypertrophy. (J Cardiac Fail 2010;16:599-608)
Resumo:
In the present study, we evaluated the mechanisms underpinning the hypertension observed in freely moving juvenile rats submitted to chronic intermittent hypoxia (CIH). Male juvenile Wistar rats (20-21 days old) were submitted to CIH (6% O(2) for 40 s every 9 min, 8 h day(-1)) for 10 days while control rats were maintained in normoxia. Prior to CIH, baseline systolic arterial pressure (SAP), measured indirectly, was similar between groups (86 +/- 1 versus 87 +/- 1 mmHg). After exposure to CIH, SAP recorded directly was higher in the CIH (n = 28) than in the control group (n = 29; 131 +/- 3 versus 115 +/- 2 mmHg, P < 0.05). This higher SAP of CIH rats presented an augmented power of oscillatory components at low (10.05 +/- 0.91 versus 5.02 +/- 0.63 mmHg(2), P < 0.05) and high (respiratory-related) frequencies (12.42 +/- 2.46 versus 3.28 +/- 0.61 mmHg(2), P < 0.05) in comparison with control animals. In addition, rats exposed to CIH also exhibited an increased cardiac baroreflex gain (-3.11 +/- 0.08 versus -2.1 +/- 0.10 beats min(-1) mmHg(-1), P < 0.0001), associated with a shift to the right of the operating point, in comparison with control rats. Administration of hexamethonium (ganglionic blocker, i.v.), injected after losartan (angiotensin II type 1 receptor antagonist) and [beta-mercapto-beta,beta-cyclopenta-methylenepropionyl(1), O-Me-Tyr(2), Arg(8)]-vasopressin (vasopressin type 1a receptor antagonist), produced a larger depressor response in the CIH (n = 8) than in the control group (n = 9; -49 +/- 2 versus -39 +/- 2 mmHg, P < 0.05). Fifteen days after the cessation of exposure to CIH, the mean arterial pressure of CIH rats returned to normal levels. The data indicate that the sympathetic-mediated hypertension observed in conscious juvenile rats exposed to CIH is not secondary to a reduction in cardiac baroreflex gain and exhibits a higher respiratory modulation, indicating that an enhanced respiratory-sympathetic coupling seems to be the major factor contributing to hypertension in rats exposed to CIH.
Resumo:
Objective: ACTH resistance syndromes are rare, autosomal, and genetically heterogeneous diseases that include familial glucocorticoid deficiency (FGD) and triple A syndrome. FGD has been shown to segregate with mutations in the gene coding for ACTH receptor (MC2R) or melanocortin 2 receptor accessory protein (MRAP), whereas mutations in the triple A syndrome (AAAS, Allgrove syndrome) gene have been found in segregation with triple A syndrome. We describe the clinical findings and molecular analysis of MC2R, MRAR and AAAS genes in five Brazilian patients with ACTH resistance syndrome. Design and methods: Genomic DNA from patients and their unaffected relatives was extracted from peripheral blood leucocytes and amplified by PCR, followed by automated sequencing. Functional analysis was carried out using Y6 cells expressing wild-type and mutant MC2R. Results: All five patients showed low cortisol and elevated plasma ACTH levels. One patient had achalasia and alacrima, besides the symptoms of adrenal insufficiency. The molecular analysis of FGD patients revealed a novel p.Gly116Val mutation in the MC2R gene in one patient and p.Met1Ile mutation in the MRAP gene in another patient. Expression of p.Glyll.6Val MC2R mutant in Y6 cells revealed that this variant failed to stimulate cAMP production. The analysis of the AAAS gene in the patient with triple A syndrome showed a novel g.782_783deITG deletion. The molecular analysis of DNA from other two patients showed no mutation in MC2R, MRAP or AAAS gene. Conclusions: In conclusion, the molecular basis of ACTH resistance syndrome is heterogeneous, segregating with genes coding for proteins involved with ACTH receptor signaling/expression or adrenal gland development and other unknown genes.
Resumo:
To evaluate the meiotic spindle and chromosomal distribution of in vitro-matured oocytes from infertile nonobese women with PCOS and male or tubal causes of infertility (controls), and to compare in vitro maturation (IVM) rates between groups. Seventy four patients (26 with PCOS and 48 controls) undergoing stimulated cycles of oocyte retrieval for ICSI were selected prospectively. Thirteen PCOS patients and 27 controls had immature oocytes retrieved submitted to IVM. After IVM, oocytes showing extrusion of the first polar body were fixed and processed for evaluation of the meiotic spindle and chromosome distribution by immunofluorescence microscopy. There were no differences between PCOS and control groups with respect to IVM rates (50.0% and 42.9%, respectively) nor the percentage of meiotic abnormalities in metaphase II oocytes (35.3% and 25%, respectively). In vitro-matured oocytes obtained from stimulated cycles of nonobese PCOS did not have an increased ratio of meiotic abnormalities.
Resumo:
To review and discuss the pathophysiology and prevention strategies for ovarian hyperstimulation syndrome (OHSS), which is a condition that may occur in up to 20% of the high risk women submitted to assisted reproductive technology cycles. The English language literature on these topics were reviewed through PubMed and discussed with emphasis on recent data. The role of estradiol, luteinizing hormone, human chorionic gonadotropin (hCG), inflammatory mediators, the renin-angiotensin system and vascular endothelial growth factor is discussed in the pathophysiology of OHSS. In addition we consider the prevention strategies, including coasting, administration of albumin, renin-angiotensin system blockage, dopamine agonist administration, non-steroidal anti-inflammatory administration, GnRH antagonist protocols, reducing hCG dosage, replacement of hCG and in vitro maturation of oocytes (IVM). Among the many prevention strategies that have been discussed, the current evidence points to the replacement of hCG by GnRH agonists in antagonist cycles and the performance of IVM procedures as the safest approaches.