957 resultados para Climate variables


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solar radiation management (SRM) geoengineering has been proposed as a potential option to counteract climate change. We perform a set of idealized geoengineering simulations using Community Atmosphere Model version 3.1 developed at the National Center for Atmospheric Research to investigate the global hydrological implications of varying the latitudinal distribution of solar insolation reduction in SRM methods. To reduce the solar insolation we have prescribed sulfate aerosols in the stratosphere. The radiative forcing in the geoengineering simulations is the net forcing from a doubling of CO2 and the prescribed stratospheric aerosols. We find that for a fixed total mass of sulfate aerosols (12.6 Mt of SO4), relative to a uniform distribution which nearly offsets changes in global mean temperature from a doubling of CO2, global mean radiative forcing is larger when aerosol concentration is maximum at the poles leading to a warmer global mean climate and consequently an intensified hydrological cycle. Opposite changes are simulated when aerosol concentration is maximized in the tropics. We obtain a range of 1 K in global mean temperature and 3% in precipitation changes by varying the distribution pattern in our simulations: this range is about 50% of the climate change from a doubling of CO2. Hence, our study demonstrates that a range of global mean climate states, determined by the global mean radiative forcing, are possible for a fixed total amount of aerosols but with differing latitudinal distribution. However, it is important to note that this is an idealized study and thus not all important realistic climate processes are modeled.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fire and soil temperatures were measured during controlled burns conducted by the Forest Department at two seasonally dry tropical forest sites in southern India, and their relationships with fuel load, fuel moisture and weather variables assessed using stepwise regression. Fire temperatures at the ground level varied between 79 degrees C and 760 degrees C, with higher temperatures recorded at high fuel loads and ambient temperatures, whereas lower temperatures were recorded at high relative humidity. Fire temperatures did not vary with fuel moisture or wind speed. Soil temperatures varied between <79 degrees C and 302 degrees C and were positively correlated with ground-level fire temperatures. Results from the study imply that fuel loads in forested areas have to be reduced to ensure low intensity fires in the dry season. Low fire temperatures would ensure lower mortality of above-ground saplings and minimal damage to root stocks of tree species that would maintain the regenerative capacity of a tropical dry forest subject to dry season wildfires.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several statistical downscaling models have been developed in the past couple of decades to assess the hydrologic impacts of climate change by projecting the station-scale hydrological variables from large-scale atmospheric variables simulated by general circulation models (GCMs). This paper presents and compares different statistical downscaling models that use multiple linear regression (MLR), positive coefficient regression (PCR), stepwise regression (SR), and support vector machine (SVM) techniques for estimating monthly rainfall amounts in the state of Florida. Mean sea level pressure, air temperature, geopotential height, specific humidity, U wind, and V wind are used as the explanatory variables/predictors in the downscaling models. Data for these variables are obtained from the National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) reanalysis dataset and the Canadian Centre for Climate Modelling and Analysis (CCCma) Coupled Global Climate Model, version 3 (CGCM3) GCM simulations. The principal component analysis (PCA) and fuzzy c-means clustering method (FCM) are used as part of downscaling model to reduce the dimensionality of the dataset and identify the clusters in the data, respectively. Evaluation of the performances of the models using different error and statistical measures indicates that the SVM-based model performed better than all the other models in reproducing most monthly rainfall statistics at 18 sites. Output from the third-generation CGCM3 GCM for the A1B scenario was used for future projections. For the projection period 2001-10, MLR was used to relate variables at the GCM and NCEP grid scales. Use of MLR in linking the predictor variables at the GCM and NCEP grid scales yielded better reproduction of monthly rainfall statistics at most of the stations (12 out of 18) compared to those by spatial interpolation technique used in earlier studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Developments in the statistical extreme value theory, which allow non-stationary modeling of changes in the frequency and severity of extremes, are explored to analyze changes in return levels of droughts for the Colorado River. The transient future return levels (conditional quantiles) derived from regional drought projections using appropriate extreme value models, are compared with those from observed naturalized streamflows. The time of detection is computed as the time at which significant differences exist between the observed and future extreme drought levels, accounting for the uncertainties in their estimates. Projections from multiple climate model-scenario combinations are considered; no uniform pattern of changes in drought quantiles is observed across all the projections. While some projections indicate shifting to another stationary regime, for many projections which are found to be non-stationary, detection of change in tail quantiles of droughts occurs within the 21st century with no unanimity in the time of detection. Earlier detection is observed in droughts levels of higher probability of exceedance. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Global change is impacting forests worldwide, threatening biodiversity and ecosystem services including climate regulation. Understanding how forests respond is critical to forest conservation and climate protection. This review describes an international network of 59 long-term forest dynamics research sites (CTFS-ForestGEO) useful for characterizing forest responses to global change. Within very large plots (median size 25ha), all stems 1cm diameter are identified to species, mapped, and regularly recensused according to standardized protocols. CTFS-ForestGEO spans 25 degrees S-61 degrees N latitude, is generally representative of the range of bioclimatic, edaphic, and topographic conditions experienced by forests worldwide, and is the only forest monitoring network that applies a standardized protocol to each of the world's major forest biomes. Supplementary standardized measurements at subsets of the sites provide additional information on plants, animals, and ecosystem and environmental variables. CTFS-ForestGEO sites are experiencing multifaceted anthropogenic global change pressures including warming (average 0.61 degrees C), changes in precipitation (up to +/- 30% change), atmospheric deposition of nitrogen and sulfur compounds (up to 3.8g Nm(-2)yr(-1) and 3.1g Sm(-2)yr(-1)), and forest fragmentation in the surrounding landscape (up to 88% reduced tree cover within 5km). The broad suite of measurements made at CTFS-ForestGEO sites makes it possible to investigate the complex ways in which global change is impacting forest dynamics. Ongoing research across the CTFS-ForestGEO network is yielding insights into how and why the forests are changing, and continued monitoring will provide vital contributions to understanding worldwide forest diversity and dynamics in an era of global change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability of Coupled General Circulation Models (CGCMs) participating in the Intergovernmental Panel for Climate Change's fourth assessment report (IPCC AR4) for the 20th century climate (20C3M scenario) to simulate the daily precipitation over the Indian region is explored. The skill is evaluated on a 2.5A degrees x 2.5A degrees grid square compared with the Indian Meteorological Department's (IMD) gridded dataset, and every GCM is ranked for each of these grids based on its skill score. Skill scores (SSs) are estimated from the probability density functions (PDFs) obtained from observed IMD datasets and GCM simulations. The methodology takes into account (high) extreme precipitation events simulated by GCMs. The results are analyzed and presented for three categories and six zones. The three categories are the monsoon season (JJASO - June to October), non-monsoon season (JFMAMND - January to May, November, December) and for the entire year (''Annual''). The six precipitation zones are peninsular, west central, northwest, northeast, central northeast India, and the hilly region. Sensitivity analysis was performed for three spatial scales, 2.5A degrees grid square, zones, and all of India, in the three categories. The models were ranked based on the SS. The category JFMAMND had a higher SS than the JJASO category. The northwest zone had higher SSs, whereas the peninsular and hilly regions had lower SS. No single GCM can be identified as the best for all categories and zones. Some models consistently outperformed the model ensemble, and one model had particularly poor performance. Results show that most models underestimated the daily precipitation rates in the 0-1 mm/day range and overestimated it in the 1-15 mm/day range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantifying distributional behavior of extreme events is crucial in hydrologic designs. Intensity Duration Frequency (IDF) relationships are used extensively in engineering especially in urban hydrology, to obtain return level of extreme rainfall event for a specified return period and duration. Major sources of uncertainty in the IDF relationships are due to insufficient quantity and quality of data leading to parameter uncertainty due to the distribution fitted to the data and uncertainty as a result of using multiple GCMs. It is important to study these uncertainties and propagate them to future for accurate assessment of return levels for future. The objective of this study is to quantify the uncertainties arising from parameters of the distribution fitted to data and the multiple GCM models using Bayesian approach. Posterior distribution of parameters is obtained from Bayes rule and the parameters are transformed to obtain return levels for a specified return period. Markov Chain Monte Carlo (MCMC) method using Metropolis Hastings algorithm is used to obtain the posterior distribution of parameters. Twenty six CMIP5 GCMs along with four RCP scenarios are considered for studying the effects of climate change and to obtain projected IDF relationships for the case study of Bangalore city in India. GCM uncertainty due to the use of multiple GCMs is treated using Reliability Ensemble Averaging (REA) technique along with the parameter uncertainty. Scale invariance theory is employed for obtaining short duration return levels from daily data. It is observed that the uncertainty in short duration rainfall return levels is high when compared to the longer durations. Further it is observed that parameter uncertainty is large compared to the model uncertainty. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AimBiodiversity outcomes under global change will be influenced by a range of ecological processes, and these processes are increasingly being considered in models of biodiversity change. However, the level of model complexity required to adequately account for important ecological processes often remains unclear. Here we assess how considering realistically complex frugivore-mediated seed dispersal influences the projected climate change outcomes for plant diversity in the Australian Wet Tropics (all 4313 species). LocationThe Australian Wet Tropics, Queensland, Australia. MethodsWe applied a metacommunity model (M-SET) to project biodiversity outcomes using seed dispersal models that varied in complexity, combined with alternative climate change scenarios and habitat restoration scenarios. ResultsWe found that the complexity of the dispersal model had a larger effect on projected biodiversity outcomes than did dramatically different climate change scenarios. Applying a simple dispersal model that ignored spatial, temporal and taxonomic variation due to frugivore-mediated seed dispersal underestimated the reduction in the area of occurrence of plant species under climate change and overestimated the loss of diversity in fragmented tropical forest remnants. The complexity of the dispersal model also changed the habitat restoration approach identified as the best for promoting persistence of biodiversity under climate change. Main conclusionsThe consideration of complex processes such as frugivore-mediated seed dispersal can make an important difference in how we understand and respond to the influence of climate change on biodiversity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bioenergy deployment offers significant potential for climate change mitigation, but also carries considerable risks. In this review, we bring together perspectives of various communities involved in the research and regulation of bioenergy deployment in the context of climate change mitigation: Land-use and energy experts, land-use and integrated assessment modelers, human geographers, ecosystem researchers, climate scientists and two different strands of life-cycle assessment experts. We summarize technological options, outline the state-of-the-art knowledge on various climate effects, provide an update on estimates of technical resource potential and comprehensively identify sustainability effects. Cellulosic feedstocks, increased end-use efficiency, improved land carbon-stock management and residue use, and, when fully developed, BECCS appear as the most promising options, depending on development costs, implementation, learning, and risk management. Combined heat and power, efficient biomass cookstoves and small-scale power generation for rural areas can help to promote energy access and sustainable development, along with reduced emissions. We estimate the sustainable technical potential as up to 100EJ: high agreement; 100-300EJ: medium agreement; above 300EJ: low agreement. Stabilization scenarios indicate that bioenergy may supply from 10 to 245EJyr(-1) to global primary energy supply by 2050. Models indicate that, if technological and governance preconditions are met, large-scale deployment (>200EJ), together with BECCS, could help to keep global warming below 2 degrees degrees of preindustrial levels; but such high deployment of land-intensive bioenergy feedstocks could also lead to detrimental climate effects, negatively impact ecosystems, biodiversity and livelihoods. The integration of bioenergy systems into agriculture and forest landscapes can improve land and water use efficiency and help address concerns about environmental impacts. We conclude that the high variability in pathways, uncertainties in technological development and ambiguity in political decision render forecasts on deployment levels and climate effects very difficult. However, uncertainty about projections should not preclude pursuing beneficial bioenergy options.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantifying the isolated and integrated impacts of land use (LU) and climate change on streamflow is challenging as well as crucial to optimally manage water resources in river basins. This paper presents a simple hydrologic modeling-based approach to segregate the impacts of land use and climate change on the streamflow of a river basin. The upper Ganga basin (UGB) in India is selected as the case study to carry out the analysis. Streamflow in the river basin is modeled using a calibrated variable infiltration capacity (VIC) hydrologic model. The approach involves development of three scenarios to understand the influence of land use and climate on streamflow. The first scenario assesses the sensitivity of streamflow to land use changes under invariant climate. The second scenario determines the change in streamflow due to change in climate assuming constant land use. The third scenario estimates the combined effect of changing land use and climate over the streamflow of the basin. Based on the results obtained from the three scenarios, quantification of isolated impacts of land use and climate change on streamflow is addressed. Future projections of climate are obtained from dynamically downscaled simulations of six general circulation models (GCMs) available from the Coordinated Regional Downscaling Experiment (CORDEX) project. Uncertainties associated with the GCMs and emission scenarios are quantified in the analysis. Results for the case study indicate that streamflow is highly sensitive to change in urban areas and moderately sensitive to change in cropland areas. However, variations in streamflow generally reproduce the variations in precipitation. The combined effect of land use and climate on streamflow is observed to be more pronounced compared to their individual impacts in the basin. It is observed from the isolated effects of land use and climate change that climate has a more dominant impact on streamflow in the region. The approach proposed in this paper is applicable to any river basin to isolate the impacts of land use change and climate change on the streamflow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite high vulnerability, the impact of climate change on Himalayan ecosystem has not been properly investigated, primarily due to the inadequacy of observed data and the complex topography. In this study, we mapped the current vegetation distribution in Kashmir Himalayas from NOAA AVHRR and projected it under A1B SRES, RCP-4.5 and RCP-8.5 climate scenarios using the vegetation dynamics model-IBIS at a spatial resolution of 0.5A degrees. The distribution of vegetation under the changing climate was simulated for the 21st century. Climate change projections from the PRECIS experiment using the HADRM3 model, for the Kashmir region, were validated using the observed climate data from two observatories. Both the observed as well as the projected climate data showed statistically significant trends. IBIS was validated for Kashmir Himalayas by comparing the simulated vegetation distribution with the observed distribution. The baseline simulated scenario of vegetation (1960-1990), showed 87.15 % agreement with the observed vegetation distribution, thereby increasing the credibility of the projected vegetation distribution under the changing climate over the region. According to the model projections, grasslands and tropical deciduous forests in the region would be severely affected while as savannah, shrubland, temperate evergreen broadleaf forest, boreal evergreen forest and mixed forest types would colonize the area currently under the cold desert/rock/ice land cover types. The model predicted that a substantial area of land, presently under the permanent snow and ice cover, would disappear by the end of the century which might severely impact stream flows, agriculture productivity and biodiversity in the region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the development and application of a stochastic dynamic programming model with fuzzy state variables for irrigation of multiple crops. A fuzzy stochastic dynamic programming (FSDP) model is developed in which the reservoir storage and soil moisture of the crops are considered as fuzzy numbers, and the reservoir inflow is considered as a stochastic variable. The model is formulated with an objective of minimizing crop yield deficits, resulting in optimal water allocations to the crops by maintaining storage continuity and soil moisture balance. The standard fuzzy arithmetic method is used to solve all arithmetic equations with fuzzy numbers, and the fuzzy ranking method is used to compare two or more fuzzy numbers. The reservoir operation model is integrated with a daily-based water allocation model, which results in daily temporal variations of allocated water, soil moisture, and crop deficits. A case study of an existing Bhadra reservoir in Karnataka, India, is chosen for the model application. The FSDP is a more realistic model because it considers the uncertainty in discretization of state variables. The results obtained using the FSDP model are found to be more acceptable for the case study than those of the classical stochastic dynamic model and the standard operating model, in terms of 10-day releases from the reservoir and evapotranspiration deficit. (C) 2015 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cybernetic modeling framework for the growth of microorganisms provides for an elegant methodology to account for the unknown regulatory phenomena through the use of cybernetic variables for enzyme induction and activity. In this paper, we revisit the assumption of limited resources for enzyme induction (Sigma u(i) = 1) used in the cybernetic modeling framework by presenting a methodology for inferring the individual cybernetic variables u(i) from experimental data. We use this methodology to infer u(i) during the simultaneous consumption of glycerol and lactose by Escherichia coli and then model the fitness trade-offs involved in the recently discovered predictive regulation strategy of microorganisms.