930 resultados para Classification algorithm
Resumo:
This manual provides a set of procedural rules and regulations for use in functionally classifying all roads and streets in Iowa according to the character of service they are intended to provide. Functional classification is a requirement of House File 394 (Functional Highway Classification Bill) enacted by the 63rd General Assembly of the Iowa Legislature. Functional classification is defined in this Bill as: "The grouping of roads and streets into systems according to the character of service they will be expected to provide, and the assignment of jurisdiction over each class to the governmental unit having primary interest in each type of service."
Resumo:
This manual provides a set of procedural rules and regulations for use in functionally classifying all roads and streets in Iowa according to the character of service they are intended to provide. Functional classification is a requirement of the 1973 Code of Iowa (Chapter 306) as amended by Senate File 1062 enacted by the 2nd session of the 65th General Assembly of Iowa. Functional classification is defined as the grouping of roads and streets into systems according to the character of service they will be expected to provide, and the assignment of jurisdiction over each class to the governmental unit having primary interest in each type of service. Stated objectives of the legislation are: "Functional classification will serve the legislator by providing an equitable basis for determination of proper source of tax support and providing for the assignment of financial resources to the governmental unit having responsibility for each class of service. Functional classification promotes the ability of the administrator to effectively prepare and carry out long range programs which reflect the transportation needs of the public." All roads and streets in legal existence will be classified. Instructions are also included in this manual for a continuous reporting to the Highway Commission of changes in classification and/or jurisdiction resulting from new construction, corporation line changes, relocations, and deletions. This continuous updating of records is absolutely essential for modern day transportation planning as it is the only possible way to monitor the status of existing road systems, and consequently determine adequacy and needs with accuracy.
Resumo:
The objective of this work was to assess and characterize two clones, 169 and 685, of Cabernet Sauvignon grapes and to evaluate the wine produced from these grapes. The experiment was carried out in São Joaquim, SC, Brazil, during the 2009 harvest season. During grape ripening, the evolution of physical-chemical properties, phenolic compounds, organic acids, and anthocyanins was evaluated. During grape harvest, yield components were determined for each clone. Individual and total phenolics, individual and total anthocyanins, and antioxidant activity were evaluated for wine. The clones were also assessed regarding the duration of their phenological cycle. During ripening, the evolution of phenolic compounds and of physical-chemical parameters was similar for both clones; however, during harvest, significant differences were observed regarding yield, number of bunches per plant and berries per bunch, leaf area, and organic acid, polyphenol, and anthocyanin content. The wines produced from these clones showed significant differences regarding chemical composition. The clones showed similar phenological cycle and responses to bioclimatic parameters. Principal component analysis shows that clone 685 is strongly correlated with color characteristics, mainly monomeric anthocyanins, while clone 169 is correlated with individual phenolic compounds.
Resumo:
This paper presents a validation study on statistical nonsupervised brain tissue classification techniques in magnetic resonance (MR) images. Several image models assuming different hypotheses regarding the intensity distribution model, the spatial model and the number of classes are assessed. The methods are tested on simulated data for which the classification ground truth is known. Different noise and intensity nonuniformities are added to simulate real imaging conditions. No enhancement of the image quality is considered either before or during the classification process. This way, the accuracy of the methods and their robustness against image artifacts are tested. Classification is also performed on real data where a quantitative validation compares the methods' results with an estimated ground truth from manual segmentations by experts. Validity of the various classification methods in the labeling of the image as well as in the tissue volume is estimated with different local and global measures. Results demonstrate that methods relying on both intensity and spatial information are more robust to noise and field inhomogeneities. We also demonstrate that partial volume is not perfectly modeled, even though methods that account for mixture classes outperform methods that only consider pure Gaussian classes. Finally, we show that simulated data results can also be extended to real data.
Resumo:
STUDY DESIGN:: Retrospective database- query to identify all anterior spinal approaches. OBJECTIVES:: To assess all patients with pharyngo-cutaneous fistulas after anterior cervical spine surgery. SUMMARY OF BACKGROUND DATA:: Patients treated in University of Heidelberg Spine Medical Center, Spinal Cord Injury Unit and Department of Otolaryngology (Germany), between 2005 and 2011 with the diagnosis of pharyngo-cutaneous fistulas. METHODS:: We conducted a retrospective study on 5 patients between 2005 and 2011 with PCF after ACSS, their therapy management and outcome according to radiologic data and patient charts. RESULTS:: Upon presentation 4 patients were paraplegic. 2 had PCF arising from one piriform sinus, two patients from the posterior pharyngeal wall and piriform sinus combined and one patient only from the posterior pharyngeal wall. 2 had previous unsuccessful surgical repair elsewhere and 1 had prior radiation therapy. In 3 patients speech and swallowing could be completely restored, 2 patients died. Both were paraplegic. The patients needed an average of 2-3 procedures for complete functional recovery consisting of primary closure with various vascularised regional flaps and refining laser procedures supplemented with negative pressure wound therapy where needed. CONCLUSION:: Based on our experience we are able to provide a treatment algorithm that indicates that chronic as opposed to acute fistulas require a primary surgical closure combined with a vascularised flap that should be accompanied by the immediate application of a negative pressure wound therapy. We also conclude that particularly in paraplegic patients suffering this complication the risk for a fatal outcome is substantial.
Resumo:
In this work, a new one-class classification ensemble strategy called approximate polytope ensemble is presented. The main contribution of the paper is threefold. First, the geometrical concept of convex hull is used to define the boundary of the target class defining the problem. Expansions and contractions of this geometrical structure are introduced in order to avoid over-fitting. Second, the decision whether a point belongs to the convex hull model in high dimensional spaces is approximated by means of random projections and an ensemble decision process. Finally, a tiling strategy is proposed in order to model non-convex structures. Experimental results show that the proposed strategy is significantly better than state of the art one-class classification methods on over 200 datasets.
Resumo:
The objective of this work was to develop a procedure to estimate soybean crop areas in Rio Grande do Sul state, Brazil. Estimations were made based on the temporal profiles of the enhanced vegetation index (Evi) calculated from moderate resolution imaging spectroradiometer (Modis) images. The methodology developed for soybean classification was named Modis crop detection algorithm (MCDA). The MCDA provides soybean area estimates in December (first forecast), using images from the sowing period, and March (second forecast), using images from the sowing and maximum crop development periods. The results obtained by the MCDA were compared with the official estimates on soybean area of the Instituto Brasileiro de Geografia e Estatística. The coefficients of determination ranged from 0.91 to 0.95, indicating good agreement between the estimates. For the 2000/2001 crop year, the MCDA soybean crop map was evaluated using a soybean crop map derived from Landsat images, and the overall map accuracy was approximately 82%, with similar commission and omission errors. The MCDA was able to estimate soybean crop areas in Rio Grande do Sul State and to generate an annual thematic map with the geographic position of the soybean fields. The soybean crop area estimates by the MCDA are in good agreement with the official agricultural statistics.
Resumo:
Inference of Markov random field images segmentation models is usually performed using iterative methods which adapt the well-known expectation-maximization (EM) algorithm for independent mixture models. However, some of these adaptations are ad hoc and may turn out numerically unstable. In this paper, we review three EM-like variants for Markov random field segmentation and compare their convergence properties both at the theoretical and practical levels. We specifically advocate a numerical scheme involving asynchronous voxel updating, for which general convergence results can be established. Our experiments on brain tissue classification in magnetic resonance images provide evidence that this algorithm may achieve significantly faster convergence than its competitors while yielding at least as good segmentation results.
Resumo:
In this paper, mixed spectral-structural kernel machines are proposed for the classification of very-high resolution images. The simultaneous use of multispectral and structural features (computed using morphological filters) allows a significant increase in classification accuracy of remote sensing images. Subsequently, weighted summation kernel support vector machines are proposed and applied in order to take into account the multiscale nature of the scene considered. Such classifiers use the Mercer property of kernel matrices to compute a new kernel matrix accounting simultaneously for two scale parameters. Tests on a Zurich QuickBird image show the relevance of the proposed method : using the mixed spectral-structural features, the classification accuracy increases of about 5%, achieving a Kappa index of 0.97. The multikernel approach proposed provide an overall accuracy of 98.90% with related Kappa index of 0.985.
Resumo:
Land use/cover classification is one of the most important applications in remote sensing. However, mapping accurate land use/cover spatial distribution is a challenge, particularly in moist tropical regions, due to the complex biophysical environment and limitations of remote sensing data per se. This paper reviews experiments related to land use/cover classification in the Brazilian Amazon for a decade. Through comprehensive analysis of the classification results, it is concluded that spatial information inherent in remote sensing data plays an essential role in improving land use/cover classification. Incorporation of suitable textural images into multispectral bands and use of segmentation‑based method are valuable ways to improve land use/cover classification, especially for high spatial resolution images. Data fusion of multi‑resolution images within optical sensor data is vital for visual interpretation, but may not improve classification performance. In contrast, integration of optical and radar data did improve classification performance when the proper data fusion method was used. Among the classification algorithms available, the maximum likelihood classifier is still an important method for providing reasonably good accuracy, but nonparametric algorithms, such as classification tree analysis, have the potential to provide better results. However, they often require more time to achieve parametric optimization. Proper use of hierarchical‑based methods is fundamental for developing accurate land use/cover classification, mainly from historical remotely sensed data.
Resumo:
Introduction New evidence from randomized controlled and etiology of fever studies, the availability of reliable RDT for malaria, and novel technologies call for revision of the IMCI strategy. We developed a new algorithm based on (i) a systematic review of published studies assessing the safety and appropriateness of RDT and antibiotic prescription, (ii) results from a clinical and microbiological investigation of febrile children aged <5 years, (iii) international expert IMCI opinions. The aim of this study was to assess the safety of the new algorithm among patients in urban and rural areas of Tanzania.Materials and Methods The design was a controlled noninferiority study. Enrolled children aged 2-59 months with any illness were managed either by a study clinician using the new Almanach algorithm (two intervention health facilities), or clinicians using standard practice, including RDT (two control HF). At day 7 and day 14, all patients were reassessed. Patients who were ill in between or not cured at day 14 were followed until recovery or death. Primary outcome was rate of complications, secondary outcome rate of antibiotic prescriptions.Results 1062 children were recruited. Main diagnoses were URTI 26%, pneumonia 19% and gastroenteritis (9.4%). 98% (531/541) were cured at D14 in the Almanach arm and 99.6% (519/521) in controls. Rate of secondary hospitalization was 0.2% in each. One death occurred in controls. None of the complications was due to withdrawal of antibiotics or antimalarials at day 0. Rate of antibiotic use was 19% in the Almanach arm and 84% in controls.Conclusion Evidence suggests that the new algorithm, primarily aimed at the rational use of drugs, is as safe as standard practice and leads to a drastic reduction of antibiotic use. The Almanach is currently being tested for clinician adherence to proposed procedures when used on paper or a mobile phone
Resumo:
The objective of this work was to evaluate the biochemical composition of six berry types belonging to Fragaria, Rubus, Vaccinium and Ribes genus. Fruit samples were collected in triplicate (50 fruit each) from 18 different species or cultivars of the mentioned genera, during three years (2008 to 2010). Content of individual sugars, organic acids, flavonols, and phenolic acids were determined by high performance liquid chromatography (HPLC) analysis, while total phenolics (TPC) and total antioxidant capacity (TAC), by using spectrophotometry. Principal component analysis (PCA) and hierarchical cluster analysis (CA) were performed to evaluate the differences in fruit biochemical profile. The highest contents of bioactive components were found in Ribes nigrum and in Fragaria vesca, Rubus plicatus, and Vaccinium myrtillus. PCA and CA were able to partially discriminate between berries on the basis of their biochemical composition. Individual and total sugars, myricetin, ellagic acid, TPC and TAC showed the highest impact on biochemical composition of the berry fruits. CA separated blackberry, raspberry, and blueberry as isolate groups, while classification of strawberry, black and red currant in a specific group has not occurred. There is a large variability both between and within the different types of berries. Metabolite fingerprinting of the evaluated berries showed unique biochemical profiles and specific combination of bioactive compound contents.
Resumo:
We present a method to automatically segment red blood cells (RBCs) visualized by digital holographic microscopy (DHM), which is based on the marker-controlled watershed algorithm. Quantitative phase images of RBCs can be obtained by using off-axis DHM along to provide some important information about each RBC, including size, shape, volume, hemoglobin content, etc. The most important process of segmentation based on marker-controlled watershed is to perform an accurate localization of internal and external markers. Here, we first obtain the binary image via Otsu algorithm. Then, we apply morphological operations to the binary image to get the internal markers. We then apply the distance transform algorithm combined with the watershed algorithm to generate external markers based on internal markers. Finally, combining the internal and external markers, we modify the original gradient image and apply the watershed algorithm. By appropriately identifying the internal and external markers, the problems of oversegmentation and undersegmentation are avoided. Furthermore, the internal and external parts of the RBCs phase image can also be segmented by using the marker-controlled watershed combined with our method, which can identify the internal and external markers appropriately. Our experimental results show that the proposed method achieves good performance in terms of segmenting RBCs and could thus be helpful when combined with an automated classification of RBCs.
Resumo:
Este trabajo presenta un Algoritmo Genético (GA) del problema de secuenciar unidades en una línea de producción. Se tiene en cuenta la posibilidad de cambiar la secuencia de piezas mediante estaciones con acceso a un almacén intermedio o centralizado. El acceso al almacén además está restringido, debido al tamaño de las piezas.AbstractThis paper presents a Genetic Algorithm (GA) for the problem of sequencing in a mixed model non-permutation flowshop. Resequencingis permitted where stations have access to intermittent or centralized resequencing buffers. The access to a buffer is restricted by the number of available buffer places and the physical size of the products.