994 resultados para Chemistry, Agricultural.
Resumo:
The effect of blanching (95 ± 3 °C) followed by sous vide (SV) processing (90 °C for 10 min) on levels of two polyacetylenes in parsnip disks immediately after processing and during chill storage was studied and compared with the effect of water immersion (WI) processing (70 °C for 2 min.). Blanching had the greatest influence on the retention of polyacetylenes in sous vide processed parsnip disks resulting in significant decreases of 24.5 and 24% of falcarinol (1) and falcarindiol (2) respectively (p < 0.05). Subsequent SV processing did not result in additional significant losses in polyacetylenes compared to blanched samples. Subsequent anaerobic storage of SV processed samples resulted in a significant decrease in 1 levels (p < 0.05) although no change in 2 levels was observed (p > 0.05). 1 levels in WI processed samples were significantly higher than in SV samples (p = 0.05). 2 was particularly susceptible to aerobic storage following WI processing with losses of up to 70% occurring after 5 days storage. 1 type polyacetylene undergoes degradation such as oxidation, dehydrogenation when thermally treated forming oxidized form of 1 type molecules, in this case falcarindione, dehydrofalcarinol, dehydrofalcarinone. Thermal processing had a significant effect on instrumental color of parsnip samples compared to minimally processed in both SV and WI processed samples resulting in parsnip disks becoming darker, yellower and browner following processing and storage.
Resumo:
Galactic bulge planetary nebulae show evidence of mixed chemistry with emission from both silicate dust and polycyclic aromatic hydrocarbons (PAHs). This mixed chemistry is unlikely to be related to carbon dredge-up, as third dredge-up is not expected to occur in the low-mass bulge stars. We show that the phenomenon is widespread and is seen in 30 nebulae out of 40 of our sample, selected on the basis of their infrared flux. Hubble Space Telescope (HST) images and Ultraviolet and Visual Echelle Spectrograph (UVES) spectra show that the mixed chemistry is not related to the presence of emission-line stars, as it is in the Galactic disc population. We also rule out interaction with the interstellar medium (ISM) as origin of the PAHs. Instead, a strong correlation is found with morphology and the presence of a dense torus. A chemical model is presented which shows that hydrocarbon chains can form within oxygen-rich gas through gas-phase chemical reactions. The model predicts two layers, one at A_V~ 1.5, where small hydrocarbons form from reactions with C+, and one at A_V~ 4, where larger chains (and by implication, PAHs) form from reactions with neutral, atomic carbon. These reactions take place in a mini-photon-dominated region (PDR). We conclude that the mixed-chemistry phenomenon occurring in the Galactic bulge planetary nebulae is best explained through hydrocarbon chemistry in an ultraviolet (UV)-irradiated, dense torus.
Resumo:
Described is the structure-based design and synthesis of a series of tris-triazole G-quadruplex binding ligands utilising the copper catalysed azide–alkyne ‘click’ reaction. The results of G-quadruplex stabilisation by the ligands are reported and discussed.
Resumo:
Maintenance of telomeres—specialized complexes that protect the ends of chromosomes, is undertaken by the enzyme complex telomerase, which is a key factor that is activated in more than 80% of cancer cells, but is absent in most normal cells. Targeting telomere maintenance mechanisms could potentially halt tumour growth across a broad spectrum of cancer types, with little cytotoxic effect outside cancer cells. Here, we describe in detail a new class of G-quadruplex binding ligands synthesized using a click chemistry approach. These ligands comprise a 1,3-di(1,2,3-triazol-4-yl)benzene pharmacophore, and display high levels of selectivity for interaction with G-quadruplex DNA vs. duplex DNA. The ability of these ligands to inhibit the enzymatic activity of telomerase correlates with their ability to stabilize quadruplex DNA, and with estimates of affinity calculated by molecular modeling.
Resumo:
Agricultural intensification can affect biodiversity and related ecosystem services such as biological control, but large-scale experimental evidence is missing. We examined aphid pest populations in cereal fields under experimentally reduced densities of (1) ground-dwelling predators (-G), (2) vegetation-dwelling predators and parasitoids (-V), (3) a combination of (1) and (2) (-G-V),compared with open-fields (control), in contrasting landscapes with low vs. high levels of agricultural intensification (AI), and in five European regions. Aphid populations were 28%, 97%, and 199% higher in -G, -V, and -G -V treatments, respectively, compared to the open fields, indicating synergistic effects of both natural-enemy groups. Enhanced parasitoid : host and predator : prey ratios were related to reduced aphid population density and population growth. The relative importance of parasitoids and vegetation-dwelling predators greatly differed among European regions, and agricultural intensification affected biological control and aphid density only in some regions. This shows a changing role of species group identity in diverse enemy communities and a need to consider region-specific landscape management.
Resumo:
Effects of agricultural intensification (AI) on biodiversity are often assessed on the plot scale, although processes determining diversity also operate on larger spatial scales. Here, we analyzed the diversity of vascular plants, carabid beetles, and birds in agricultural landscapes in cereal crop fields at the field (n = 1350), farm (n = 270), and European-region (n = 9) scale. We partitioned diversity into its additive components alpha, beta, and gamma, and assessed the relative contribution of beta diversity to total species richness at each spatial scale. AI was determined using pesticide and fertilizer inputs, as well as tillage operations and categorized into low, medium, and high levels. As AI was not significantly related to landscape complexity, we could disentangle potential AI effects on local vs. landscape community homogenization. AI negatively affected the species richness of plants and birds, but not carabid beetles, at all spatial scales. Hence, local AI was closely correlated to beta diversity on larger scales up to the farm and region level, and thereby was an indicator of farm-and region-wide biodiversity losses. At the scale of farms (12.83-20.52%) and regions (68.34-80.18%), beta diversity accounted for the major part of the total species richness for all three taxa, indicating great dissimilarity in environmental conditions on larger spatial scales. For plants, relative importance of alpha diversity decreased with AI, while relative importance of beta diversity on the farm scale increased with AI for carabids and birds. Hence, and in contrast to our expectations, AI does not necessarily homogenize local communities, presumably due to the heterogeneity of farming practices. In conclusion, a more detailed understanding of AI effects on diversity patterns of various taxa and at multiple spatial scales would contribute to more efficient agri-environmental schemes in agroecosystems.
Resumo:
The chemistry in a protoplanetary accretion disk is modelled between a radius of 100 and 0.1 AU of the central object. We find that interaction of the gas with the dust grains is very important, both by removing a large fraction of the material from the gas in the outer regions and through the chemical reactions which can occur on the dust grain surfaces. In addition, collision with grains neutralises gaseous ions effectively and keeps the ionization fraction low. This results in a chemistry which is dominated by neutral-neutral reactions, even if ionization is provided by cosmic rays or by the decay of radioactive isotopes. We model the effects of two desorption processes with very different efficiencies and find that while these produce similar results over much of the disk for many species, some molecules are extremely sensitive to the nature of the desorption and may one day be used as an observational test for the desorption process.
Resumo:
We compare the results of our JCMT spectral line survey of molecular gas towards ultracompact HII regions with the predictions of models of sulphur chemistry in hot cores. We investigate the range of evolutionary models that are consistent with the observed physical conditions and chemical abundances, and see to what extent it is possible to constrain core ages by comparing abundances with the predictions of chemical models. The observed abundance ratios vary little from source to source, suggesting that all the sources are at a similar evolutionary stage. The models are capable of predicting the observed abundances of H2S, SO, SO2, and CS. The models fail to predict the amount of OCS observed, suggesting that an alternative formation route is required. An initial H2S abundance from grain mantle evaporation of similar to 10(-7) is preferred.
Resumo:
We have considered the chemistry occuring in the circumstellar envelope surrounding an oxygen-rich AGE star and have specifically modelled 4 sources; R Dor, TX Cam, OH231.8+4.2 and IK Tau. Methane has been assumed to be a parent molecule and the resulting carbon chemistry is investigated. We find that carbon chain molecules up to C2H4 can be abundant as can CH3CN and CH3OH. Our model extends previous work by including the chemistry of silicon, chlorine and phosphorus. The presence of CH4 as a parent and hence its daughter species CH3 and CH3+ leads to other carbon-bearing species such as H2CS, SiCH2, H2CN and CCl.
Resumo:
We have constructed a model for chemistry in the outflow of an asymptotic giant branch (AGB) star, using a spheroidal anisotropy in density, after that used by Jura. The predicted distributions of a selection of representative species are shown, and it is suggested that the abundance distributions observed by interferometry in IRC + 10216 may be the result of directional variation in outflow velocity.