927 resultados para Chemical-structure
Resumo:
The new crystalline compound, Li2PO2N, was synthesized using high temperature solid state methods starting with a stoichiometric mixture of Li2O, P2O5, and P3N5. Its crystal structure was determined ab initio from powder X-ray diffraction. The compound crystallizes in the orthorhombic space group Cmc2(1) (# 36) with lattice constants a = 9.0692(4) angstrom, b = 53999(2) angstrom, and c = 4.6856(2) angstrom. The crystal structure of SD-Li2PO2N consists of parallel arrangements of anionic chains formed of corner sharing (PO2N2) tetrahedra. The chains are held together by Li+ cations. The structure of the synthesized material is similar to that predicted by Du and Holzwarth on the basis of first principles calculations (Phys. Rev. B 81,184106 (2010)). The compound is chemically and structurally stable in air up to 600 degrees C and in vacuum up to 1050 degrees C. The Arrhenius activation energy of SD-Li2PO2N in pressed pellet form was determined from electrochemical impedance spectroscopy measurements to be 0.6 eV, comparable to that of the glassy electrolyte LiPON developed at Oak Ridge National Laboratory. The minimum activation energies for Li ion vacancy and interstitial migrations are computed to be 0.4 eV and 0.8 eV, respectively. First principles calculations estimate the band gap of SD-Li2PO2N to be larger than 6 eV. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
The Gracias Laboratory at Johns Hopkins University has developed microgrippers which utilize chemically-actuated joints to be used in micro-surgery. These grippers, however, take up to thirty minutes to close fully when activated biochemicals in the human body. This is very problematic and could limit the use of the devices in surgery. It is the goal of this research to develop a gripper that uses theGracias Laboratory's existing joints in conjunction with mechanical components to decrease the closing time. The purpose of including the mechanical components is to induce a state of instability at which time a small perturbation would cause the joint to close fully.The main concept of the research was to use the lateral buckling of a triangular gripper geometry and use a toggle mechanism to decrease the closure time of the device. This would create a snap-action device mimicking the quick closure of a Venus flytrap. All developed geometries were tested using finite element analysis to determine ifloading conditions produced the desired buckled shape. This research examines lateral buckling on the micro-scale and the possibility ofusing this phenomenon in a micro-gripper. Although a final geometry with the required deformed shaped was not found, this document contains suggestions for future geometries that may produce the correct deformed shape. It was determined through this work that in order to obtain the desired deformed shape, polymeric sections need to be added to the geometry. This simplifies the analysis and allows the triangular structure to buckle in the appropriate way due to the added joints. Future work for this project will be completed by undergraduate students at Bucknell University. Fabrication and testing of devices will be done at Johns Hopkins University in the Gracias Laboratory.
Resumo:
We present the first molecular model of the coordination complex formed by Cu(I) and imidazole-epichlorohydrin polymers. Our calculations show that the Cu(I) ion has linear coordination and the whole complex has neutral charge. Our model suggests salt couple pairing as the driving force for the formation of the surface-confined precipitation, which is crucial to obtain flat surfaces in industrial copper deposition processes, required for mass fabrication of state-of-the-art electronic and memory devices.
Resumo:
We report the analysis of the SI So rotational band contours of jet-cooled 5-methyl-2-hydroxypyrimidine (5M2HP), the enol form of deoxythymine. Unlike thymine, which exhibits a structureless spectrum, the vibronic spectrum of 5M2HP is well structured, allowing us to determine the rotational constants and the methyl group torsional barriers in the S-0 and S-1 states. The 0(0)(0), 6a(0)(1), 6b(0)(1), and 14(0)(1) band contours were measured at 900 MHz (0.03 cm(-1)) resolution using mass-specific two-color resonant two-photon ionization (2C-R2PI) spectroscopy. All four bands are polarized perpendicular to the pyrimidine plane (>90% c type), identifying the S-1 <- S-0 excitation of 5M2HP as a 1n pi* transition. All contours exhibit two methyl rotor subbands that arise from the lowest 5-methyl torsional states 0A '' and 1E ''. The S-0 and S-1 state torsional barriers were extracted from fits to the torsional subbands. The 3-fold barriers are V-3 '' = 13 cm(-1) and V3' = SI cm(-1); the 6-fold barrier contributions V-6 '' and V-6' are in the range of 2-3 cm(-1) and are positive in both states. The changes of A, B, and C rotational constants upon S-1 <- S-0 excitation were extracted from the contours and reflect an "anti-quinoidal" distortion. The 0(0)(0) contour can only be simulated if a 3 GHz Lorentzian line shape is included, which implies that the S-1(1n pi*) lifetime is similar to 55 ps. For the 6a(0)(1) and 6b(0)(1) bands, the Lorentzian component increases to 5.5 GHz, reflecting a lifetime decrease to similar to 30 ps. The short lifetimes are consistent with the absence of fluorescence from the 1n pi* state. Combining these measurements with the previous observation of efficient intersystem crossing (ISC) from the Si state to a long-lived T-1((3)n pi*) state that lies similar to 2200 cm(-1) below [S. Lobsiger, S. et al. Phys. Chem. Chem. Phys. 2010, 12, 5032] implies that the broadening arises from fast intersystem crossing with k(ISC) approximate to 2 x 10(10) s(-1). In comparison to 5-methylpyrimidine, the ISC rate is enhanced by at least 10 000 by the additional hydroxy group in position 2.
Resumo:
Two clayey materials, one provided by a patner in mineral sector and the other coming from Balengou (West Region Cameroon) were subject of a comparative study in order to evaluate the influence of their crystalline structure on their pozzolanic property. These two natural materials were preliminary enriched in clay minerals by wet sieving and the fractions obtained are denoted K and H respectively. K and H were calcinated at 700 °C, with a heating rate of 5 °C/min and 10 hours dwell at the peak temperature, the products obtained were named MK and MH. Samples K, H, MK and MH were physicochemically characterized by the chemical (ICP), thermal(TGA/DTA) and mineralogical (DRX and Spectrometry IR) analyses together with the measurement of specific surface (BET), crystallinity and the pouzzolanicity test. The results confirmed K as a kaolinitic and H halloysic clay. The kaolinite and the halloysite respectively presented in these clayey materials exhibited a poor crystallinity, but the degree of disorder is higher in K than in H. These results were largely affected by the significant fraction of gibbsite in kaolinitic clay K. At the crude state, the pozzolanic activity of the material H is weak compared with that of K, but the heat treatment makes largely improve this property for both samples.
Resumo:
Phosphatidylinositol-specific phospholipases C (PI-PLC) are known to participate in many eukaryotic signal transduction pathways and act as virulence factors in lower organisms. Glycerophosphoryl diester phosphodiesterase (GDPD) enzymes are involved in phosphate homeostasis and phospholipid catabolism for energy production. Streptomyces antibioticus phosphatidylinositol-specific phospholipase C (SaPLC1) is a 38 kDa enzyme that displays characteristics of both enzyme superfamilies, representing an evolutionary link between these divergent enzyme classes. SaPLC1 also boasts a unique catalytic mechanism that involves a trans 1,6-cyclic inositol phosphate intermediate instead of the typical cis 1,2-cyclic inositol phosphate. The mechanism by which this occurs is still unclear. To attack this problem, we established a wide mutagenesis scan of the active site and measured activities of alanine mutants. A chemical rescue assay was developed to verify that the activity loss was due to the removal of the functional role of the mutated residue. 31P-NMR was employed in characterizing and quantifying intermediates in mutants that slowed the reaction sufficiently. We found that the H37A and H76A mutations support the hypothesis that these structurally conserved residues are also conserved in terms of their catalytic roles. H37 was found to be the general base (GB), while H76 plays the role of general acid (GA). K131 was identified as a semi-conserved key positive charge donor found at the entrance of the active site. By elucidating the SaPLC1 mechanism in relation to its active site architecture, we have increased our understanding of the structure-function relations that support catalysis in the PI-PLC/GDPD superfamily. These findings provide groundwork for in vivo studies of SaPLC1 function and its possible role in novel signaling or metabolism in Streptomyces.
Resumo:
The 3D NMR structures of six octapeptide agonist analogues of somatostatin (SRIF) in the free form are described. These analogues, with the basic sequence H-DPhe/Phe2-c[Cys3-Xxx7-DTrp8-Lys9-Thr10-Cys14]-Thr-NH2 (the numbering refers to the position in native SRIF), with Xxx7 being Ala/Aph, exhibit potent and highly selective binding to human SRIF type 2 (sst2) receptors. The backbone of these sst2-selective analogues have the usual type-II' beta-turn reported in the literature for sst2/3/5-subtype-selective analogues. Correlating the biological results and NMR studies led to the identification of the side chains of DPhe2, DTrp8, and Lys9 as the necessary components of the sst2 pharmacophore. This is the first study to show that the aromatic ring at position 7 (Phe7) is not critical for sst2 binding and that it plays an important role in sst3 and sst5 binding. This pharmacophore is, therefore, different from that proposed by others for sst2/3/5 analogues.