982 resultados para Cellular oxygen
Resumo:
Microcoleus vaginatus isolated from a desert algal crust of Shapotou was cultured in BG-11 medium containing 0.2mol l(-1) NaCl or 0.2mol l(-1) NaCl plus 100mg l(-1) sucrose, extracellular polymeric substances (EPS) or hot water-soluble polysaccharides (HWP), respectively. Photosynthetic oxygen evolution rates, photosystem 11 activity (Fv/Fm) and dark respiration of NaCl-stressed cells were enhanced significantly by the added sucrose or EPS under salt stress conditions (0.2mol l(-1) NaCl). Compared with cells treated with salt alone, sodium contents in cells reduced significantly; the content of cellular total carbohydrate did not change, and intracellular sucrose, water-soluble sugar increased significantly following the addition of exogenous carbohydrates. Sucrose synthase (SS) activity of NaCl-stressed cells increased following the addition of sucrose, and sucrose phosphate synthase (SPS) activity of NaCl-stressed cells increased following the addition of exogenous sucrose, EPS or HWP compared with cells stressed with NaCl only. The results suggested that the extruded EPS might be re-absorbed by cells of M. vaginatus as carbon source, they could increase salt tolerance of M. vaginatus through the changes of carbohydrate metabolism and the selective uptake of sodium ions. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper reports a new method for detection of ROS scavengers including superoxide dismutase, ascorbic acid and glutathione based on a 'probe' of peroxidase-oxidase biochemical oscillator. The oscillation period and amplitude change with different concentrations of scavengers. The linear ranges of superoxide dismutase, ascorbic acid and glutathione are respectively 1.56 x 10(-4)-1.56 x 10(-3) mg mL(-1), 1.75 x 10(-7) -1.75 x 10(-5) mol L-1 and 9.38 x 10(-7) -7.5 x 10(-5) mol L-1. The selectivity, linearity and precision for superoxide dismutase, ascorbic acid, and glutathione are presented and discussed. The results compared well with other standard methods for determination of superoxide dismutase, ascorbic acid and glutathione. Some possible steps in the overall reaction mechanisms are discussed.
Resumo:
The activities of carbonic anhydrase (CA) and photosynthesis of Porphyra haitanensis were investigated in order to see its photosynthetic utilization of inorganic carbon source. Both intra- and extra-cellular CA activities existed in the thallus. CA inhibitors, acetazolamide (AZ) and ethoxyzolamide (EZ), remarkably depressed the photosynthetic oxygen evolution in seawater of pH 8.2 and 10.0, and EZ showed stronger inhibition than AZ. The observed net photosynthetic rate In seawater of pH 8.2 was much higher than that of CO2 supply theoretically derived from spontaneous dehydration of HCO3-. P. haitanensis also showed a rather high pH compensation point (9.9). The results demonstrated that P. haitanensis could utilize bicarbonate as the external inorganic carbon source for photosynthesis. The bicarbonate utilization was closely associated with HCO3- dehydration catalyzed by extracellular CA activity. The inorganic carbon composition in seawater could well saturate the photosynthesis of P. haitanensis. The low K-m value and compensation points for inorganic carbon reflected the existence of CO2-concentrating mechanism in this alga.
Resumo:
A pathogenic virus (RGV), isolated from diseased pig frog Rana grylio with lethal syndrome, was investigated with regard to morphogenesis and cellular interactions in EPC cells, a cell Line from fish. Different stages of virus amplification, maturation and assembly were observed at nucleus, cytoplasm and cellular membranes. The matured virus particles, were not only distributed diffusely in nucleus, cytoplasm and cellular surface, but also aggregated as pseudocrystalline arrays in the cytoplasm. Virions were released by budding from the plasma membranes, or following cell lysis. Various types of cell damage, such as small vacuoles, spherical inclusions, and swollen and empty mitochondria, were also found. Some typical characteristics of RGV, such as the symmetrical shape of the virions, replication process involving both nuclear and cytoplasmic phases, budding release from cellular membrane and intracellular membrane, viromatrix and paracrystalline aggregation in cytoplasm, and its acute pathogenic effects, were observed to be similar to that of other iridoviruses. Therefore, the RGV appears to be a member of the Iridoviridae based on these studies. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Codoping of p-type GaN nanowires with Mg and oxygen was investigated using first-principles calculations. The Mg becomes a deep acceptor in GaN nanowires with high ionization energy due to the quantum confinement. The ionization energy of Mg doped GaN nanowires containing passivated Mg-O complex decreases with increasing the diameter, and reduces to 300 meV as the diameter of the GaN nanowire is larger than 2.01 nm, which indicates that Mg-O codoping is suitable for achieving p-type GaN nanowires with larger diameters. The codoping method to reduce the ionization energy can be effectively used in other semiconductor nanostructures. (C) 2010 American Institute of Physics.
Resumo:
It is revealed from first-principles calculations that polarization-induced asymmetric distribution of oxygen vacancies plays an important role in the insulating behavior at p-type LaAlO3/SrTiO3 interface. The formation energy of the oxygen vacancy (V-O) is much smaller than that at the surface of the LaAlO3 overlayer, causing all the carriers to be compensated by the spontaneously formed V-O's at the interface. In contrast, at an n-type interface, the formation energy of V-O is much higher than that at the surface, and the V-O's formed at the surface enhance the carrier density at the interface. This explains the puzzling behavior of why the p-type interface is always insulating but the n-type interface can be conducting.
Resumo:
ZnO films are prepared on glass substrates by pulsed laser deposition (PLD) at different oxygen pressures, and the effects of oxygen pressure on the structure and optoelectrical properties of as-grown ZnO films are investigated. The results show that the crystallite size and surface roughness of the films increase, but the carrier concentration and optical energy gap E-g decrease with increasing oxygen pressure. Only UV emission is found in the photoluminescence (PL) spectra of all the samples, and its intensity increases with oxygen pressure. Furthermore, there are marked differences in structure and properties between the films grown at low oxygen pressures (0.003 and 0.2 Pa) and the films grown at high oxygen pressures (24 and 150 Pa), which is confirmed by the fact that the crystallite size and UV emission intensity markedly increase, but the carrier concentration markedly decreases as oxygen pressure increases from 0.2 to 24 Pa. These results show that the crystal quality, including the microstructural quality and stoichiometry proportion, of the prepared ZnO films improves as oxygen pressure increases, particularly from 0.2 to 24 Pa.
Resumo:
In this paper, a cellular neural network with depressing synapses for contrast-invariant pattern classification and synchrony detection is presented, starting from the impulse model of the single-electron tunneling junction. The results of the impulse model and the network are simulated using simulation program with integrated circuit emphasis (SPICE). It is demonstrated that depressing synapses should be an important candidate of robust systems since they exhibit a rapid depression of excitatory postsynaptic potentials for successive presynaptic spikes.
Resumo:
Separation by implantation of oxygen and nitrogen (SIMON) silicon-on-insulator (SOI) materials were fabricated by sequential oxygen and nitrogen implantation with annealing after each implantation. Analyses of SIMS, XTEM and HRTEM were performed. The results show that superior buried insulating multi-layers were well formed and the possible mechanism is discussed. The remarkable total-dose irradiation tolerance of SIMON materials was confirmed by few shifts of drain leakage current-gate source voltage (I-V) curves of PMOS transistors fabricated on SIMON materials before and after irradiation.
Resumo:
Gd2O3 thin films were deposited on Si (100) substrates at 650degreesC by a magnetron sputtering system under different Ar/O-2 ratios of 6:1, 4:1 and 2:1. The effect of the oxygen concentration on the properties of oxide thin films was investigated by X-ray diffraction, X-ray photoelectron spectroscopy, atomic force microscopy and capacitance-voltage (C-V)measurement. X-ray diffraction shows that the structure of oxide films changed from the monoclinic Gd2O3 phase to cubic Gd2O3 phase when the oxygen concentration increased. According to C-V measurement, the dielectric constant value of the samples deposited at different Ar/O-2 ratios is about 12. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
In our work, nitrogen ions were implanted into separation-by-implantation-of-oxygen (SIMOX) wafers to improve the radiation hardness of the SIMOX material. The experiments of secondary ion mass spectroscopy (SIMS) analysis showed that some nitrogen ions were distributed in the buried oxide layers and some others were collected at the Si/SiO2 interface after annealing. The results of electron paramagnetic resonance (EPR) suggested the density of the defects in the nitrided samples changed with different nitrogen ion implantation energies. Semiconductor-insulator-semiconductor (SIS) capacitors were made on the materials, and capacitance-voltage (C-V) measurements were carried out to confirm the results. The super total dose radiation tolerance of the materials was verified by the small increase of the drain leakage current of the metal-oxide-semiconductor field effect transistor with n-channel (NMOSFETs) fabricated on the materials before and after total dose irradiation. The optimum implantation energy was also determined.
Resumo:
C-axis-orientated ZnO thin films were prepared on glass substrates by pulsed-laser deposition (PLD) technique in an oxygen-reactive atmosphere, using a metallic Zn target. The effects of growth condition such as laser energy and substrate temperature on the structural and optical properties of ZnO films had been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission spectra and room-temperature (RT) photoluminescence (PL) measurements. The results showed that the thickness, crystallite size, and compactness of ZnO films increased with the laser energy and substrate temperature. Both the absorption edges and the UV emission peaks of the films exhibited redshift, and UV emission intensity gradually increased as the laser energy and substrate temperature increased. From these results, it was concluded that crystalline quality of ZnO films was improved with increasing laser energy and substrate temperature. (c) 2007 Elsevier B.N. All rights reserved.
Resumo:
ZnO films prepared at different temperatures and annealed at 900 degrees C in oxygen are studied by photoluminescence (PL) and x-ray photoelection spectroscopy (XPS). It is observed that in the PL of the as-grown films the green luminescence (GL) and the yellow luminescence (YL) are related, and after annealing the GL is restrained and the YL is enhanced. The O 1s XPS results also show the coexistence of oxygen vacancy (Vo) and interstitial oxygen (O-i) before annealing and the quenching of the V-o after annealing. By combining the two results it is deduced that the GL and YL are related to the V-o and O-i defects, respectively.
Resumo:
Defects in ZnO films grown by radio-frequency reactive magnetron sputtering under variable ratios between oxygen and argon gas have been investigated by using the monoenergetic positron beam technique. The dominate intrinsic defects in these ZnO samples are O vacancies (V-O) and Zn interstitials (Zn-i) when the oxygen fraction in the O-2/Ar feed gas does not exceed 70% in the processing chamber. On the other hand, zinc vacancies are preponderant in the ZnO Elms fabricated in richer oxygen environment. The concentration of zinc vacancies increases with the increasing (2) fraction. For the oxygen fraction 85%, the number of zinc vacancies that could trap positrons will be smaller. It is speculated that some unknown defects could shield zinc vacancies. The concentration of zinc vacancies in the ZnO films varies with the oxygen fraction in the growth chamber, which is in agreement with the results of photoluminescence spectra.
Resumo:
We investigate the quantum dynamics of the quantum-dot cellular automata qubit in the presence of a quantum point contact detector by modified rate equations. It is demonstrated that the qubit information can be resolved by measuring the detector current variation. Furthermore, we show that this oscillating current and the electron occupation probabilities in states \b> and \c> decay drastically as the dephasing rate increases, clearly revealing the influence of the dephasing induced by the detector. Moreover, it is shown that the operation speed of the quantum-dot cellular automata qubit may be adjusted by varying the interdot coupling strength. (C) 2003 American Institute of Physics.