872 resultados para Cell robot - Automotive industry
Resumo:
Continuum, partial differential equation models are often used to describe the collective motion of cell populations, with various types of motility represented by the choice of diffusion coefficient, and cell proliferation captured by the source terms. Previously, the choice of diffusion coefficient has been largely arbitrary, with the decision to choose a particular linear or nonlinear form generally based on calibration arguments rather than making any physical connection with the underlying individual-level properties of the cell motility mechanism. In this work we provide a new link between individual-level models, which account for important cell properties such as varying cell shape and volume exclusion, and population-level partial differential equation models. We work in an exclusion process framework, considering aligned, elongated cells that may occupy more than one lattice site, in order to represent populations of agents with different sizes. Three different idealizations of the individual-level mechanism are proposed, and these are connected to three different partial differential equations, each with a different diffusion coefficient; one linear, one nonlinear and degenerate and one nonlinear and nondegenerate. We test the ability of these three models to predict the population level response of a cell spreading problem for both proliferative and nonproliferative cases. We also explore the potential of our models to predict long time travelling wave invasion rates and extend our results to two dimensional spreading and invasion. Our results show that each model can accurately predict density data for nonproliferative systems, but that only one does so for proliferative systems. Hence great care must be taken to predict density data for with varying cell shape.
Resumo:
Rats are superior to the most advanced robots when it comes to creating and exploiting spatial representations. A wild rat can have a foraging range of hundreds of meters, possibly kilometers, and yet the rodent can unerringly return to its home after each foraging mission, and return to profitable foraging locations at a later date (Davis, et al., 1948). The rat runs through undergrowth and pipes with few distal landmarks, along paths where the visual, textural, and olfactory appearance constantly change (Hardy and Taylor, 1980; Recht, 1988). Despite these challenges the rat builds, maintains, and exploits internal representations of large areas of the real world throughout its two to three year lifetime. While algorithms exist that allow robots to build maps, the questions of how to maintain those maps and how to handle change in appearance over time remain open. The robotic approach to map building has been dominated by algorithms that optimise the geometry of the map based on measurements of distances to features. In a robotic approach, measurements of distance to features are taken with range-measuring devices such as laser range finders or ultrasound sensors, and in some cases estimates of depth from visual information. The features are incorporated into the map based on previous readings of other features in view and estimates of self-motion. The algorithms explicitly model the uncertainty in measurements of range and the measurement of self-motion, and use probability theory to find optimal solutions for the geometric configuration of the map features (Dissanayake, et al., 2001; Thrun and Leonard, 2008). Some of the results from the application of these algorithms have been impressive, ranging from three-dimensional maps of large urban strucutures (Thrun and Montemerlo, 2006) to natural environments (Montemerlo, et al., 2003).
Resumo:
A fundamental principle of the resource-based (RBV) of the firm is that the basis for a competitive advantage lies primarily in the application of bundles of valuable strategic capabilities and resources at a firm’s or supply chain’s disposal. These capabilities enact research activities and outputs produced by industry funded R&D bodies. Such industry lead innovations are seen as strategic industry resources, because effective utilization of industry innovation capacity by sectors such as the Australian beef industry are critical, if productivity levels are to increase. Academics and practitioners often maintain that dynamic supply chains and innovation capacity are the mechanisms most likely to deliver performance improvements in national industries.. Yet many industries are still failing to capitalise on these strategic resources. In this research, we draw on the resource-based view (RBV) and embryonic research into strategic supply chain capabilities. We investigate how two strategic supply chain capabilities (supply chain performance differential capability and supply chain dynamic capability) influence industry-led innovation capacity utilization and provide superior performance enhancements to the supply chain. In addition, we examine the influence of size of the supply chain operative as a control variable. Results indicate that both small and large supply chain operatives in this industry believe these strategic capabilities influence and function as second-order latent variables of this strategic supply chain resource. Additionally respondents acknowledge size does impacts both the amount of influence these strategic capabilities have and the level of performance enhancement expected by supply chain operatives from utilizing industry-led innovation capacity. Results however also indicate contradiction in this industry and in relation to existing literature when it comes to utilizing such e-resources.
Resumo:
In 2005 the Shanghai municipal government adopted the notion of ‘creative industries’ as part of their economic development strategy. At the same time, they officially recognized a number of ‘Creative Industry Clusters’ (CIC) in the city; over the next five years these official clusters grew to over ninety in number. The active promotion of CIC by the local state can thus been seen as central to its adoption of the creative industries agenda, in turn part of its aspiration to become a modern, global metropolis. In the first part of this paper we look at the emergence of the creative industry agenda in China, making some general observations about the need to place such policy transfer in its specific context. We suggest how this agenda might be understood in the national context of China’s economic and cultural policy development. In the second we give a critical account of the development of the creative industries agenda in Shanghai and its relationship to that for CIC. We argue that this agenda had more to do with real estate development than the promotion of a ‘creative milieu’ or ‘ecosystem’, and we also give some reasons as to why this was the case. In the third section we provide some new evidence to suggest the increasing disjunction between CIC and such a wider ‘creative milieu’. In the final section we suggest some new ways in which these CIC might be approached by local government in Shanghai .
Resumo:
Overcoming many of the constraints to early stage investment in biofuels production from sugarcane bagasse in Australia requires an understanding of the complex technical, economic and systemic challenges associated with the transition of established sugar industry structures from single product agri-businesses to new diversified multi-product biorefineries. While positive investment decisions in new infrastructure requires technically feasible solutions and the attainment of project economic investment thresholds, many other systemic factors will influence the investment decision. These factors include the interrelationships between feedstock availability and energy use, competing product alternatives, technology acceptance and perceptions of project uncertainty and risk. This thesis explores the feasibility of a new cellulosic ethanol industry in Australia based on the large sugarcane fibre (bagasse) resource available. The research explores industry feasibility from multiple angles including the challenges of integrating ethanol production into an established sugarcane processing system, scoping the economic drivers and key variables relating to bioethanol projects and considering the impact of emerging technologies in improving industry feasibility. The opportunities available from pilot scale technology demonstration are also addressed. Systems analysis techniques are used to explore the interrelationships between the existing sugarcane industry and the developing cellulosic biofuels industry. This analysis has resulted in the development of a conceptual framework for a bagassebased cellulosic ethanol industry in Australia and uses this framework to assess the uncertainty in key project factors and investment risk. The analysis showed that the fundamental issue affecting investment in a cellulosic ethanol industry from sugarcane in Australia is the uncertainty in the future price of ethanol and government support that reduces the risks associated with early stage investment is likely to be necessary to promote commercialisation of this novel technology. Comprehensive techno-economic models have been developed and used to assess the potential quantum of ethanol production from sugarcane in Australia, to assess the feasibility of a soda-based biorefinery at the Racecourse Sugar Mill in Mackay, Queensland and to assess the feasibility of reducing the cost of production of fermentable sugars from the in-planta expression of cellulases in sugarcane in Australia. These assessments show that ethanol from sugarcane in Australia has the potential to make a significant contribution to reducing Australia’s transportation fuel requirements from fossil fuels and that economically viable projects exist depending upon assumptions relating to product price, ethanol taxation arrangements and greenhouse gas emission reduction incentives. The conceptual design and development of a novel pilot scale cellulosic ethanol research and development facility is also reported in this thesis. The establishment of this facility enables the technical and economic feasibility of new technologies to be assessed in a multi-partner, collaborative environment. As a key outcome of this work, this study has delivered a facility that will enable novel cellulosic ethanol technologies to be assessed in a low investment risk environment, reducing the potential risks associated with early stage investment in commercial projects and hence promoting more rapid technology uptake. While the study has focussed on an exploration of the feasibility of a commercial cellulosic ethanol industry from sugarcane in Australia, many of the same key issues will be of relevance to other sugarcane industries throughout the world seeking diversification of revenue through the implementation of novel cellulosic ethanol technologies.
Resumo:
This thesis presents a design investigation into how traditional technology-orientated markets can use design led innovation (DLI) strategies in order to achieve better market penetration of disruptive products. In a review of the Australian livestock industry, considering historical information and present-day trends, a lack of socio-cultural consideration was identified in the design and implementation of products and systems, previously been taken to market. Hence the adoption of these novel products has been documented as extremely slow. Classical diffusion models have typically been used in order to implement these products. However, this thesis poses that it is through the strategic intent of design led innovation, where heavily technology-orientated markets (such as the Australian livestock industry), can achieve better final adoption rates. By considering a range of external factors (business models, technology and user needs), rather than focusing design efforts solely on the technology, it is argued that using DLI approach will lead to disruptive innovations being made easier to adopt in the Australian livestock industry. This thesis therefore explored two research questions: 1. What are the social inhibitors to the adoption of a new technology in the Australian livestock industry? 2. Can design be used to gain a significant feedback response to the proposed innovation? In order to answer these questions, this thesis used a design led innovation approach to investigate the livestock industry, centring on how design can be used early on in the development of disruptive products being taken to market. This thesis used a three stage data collection programme, combining methods of design thinking, co-design and participatory design. The first study found four key themes to the social barriers of technology adoption; Social attitudes to innovation, Market monitoring, Attitude to 3D imaging and Online processes. These themes were built upon through a design thinking/co-design approach to create three ‘future scenarios’ to be tested in participant workshops. The analysis of the data collection found four key socio-cultural barriers that inhibited the adoption of a disruptive innovation in the Australian livestock industry. These were found to be a lack of Education, a Culture of Innovation, a Lack of Engagement and Communication barriers. This thesis recommends five key areas to be focused upon in the subsequent design of a new product in the Australian livestock industry. These recommendations are made to business and design managers looking to introduce disruptive innovations in this industry. Moreover, the thesis presents three design implications relating to stakeholder attitudes, practical constraints and technological restrictions of innovations within the industry.
Resumo:
Haematopoiesis is the process by which a hierarchy of mature and progenitor blood cells are formed. These cell populations are all derived from multipotent haematopoietic stem cells (HSC), which reside in the bone marrow ‘niche’ of adult humans. Over the lifetime of a healthy individual, this HSC population replenishes between 1010-1011 blood cells on a daily basis. Dysregulation of this system can lead to a number of haematopoietic diseases, including aplastic anaemias and leukaemias, which result in, or require for disease resolution, bone marrow cell depletion. In 1956, E. Donnall Thomas demonstrated that haematopoiesis could be restored by transplanting bone marrow-derived cells from one man into his identical twin brother, who was suffering from advanced leukaemia. His success drew significant interest in academic research and medicine communities, and 12 years later, the first successful allogeneic transplant was performed. To this day, HSCs remain the most studied and characterised stem cell population. In fact, HSCs are the only stem cell population routinely utilised in the clinic. As such, HSCs function as a model system both for the biological investigation of stem cells, as well as for their clinical application. Herein, we briefly review HSC transplantation, strategies for the ex vivo cultivation of HSCs, recent clinical outcomes, and their impact on the future direction of HSC transplantation therapy.
Resumo:
Power relations and small and medium-sized enterprise strategies for capturing value in global production networks: visual effects (VFX) service firms in the Hollywood film industry, Regional Studies. This paper provides insights into the way in which non-lead firms manoeuvre in global value chains in the pursuit of a larger share of revenue and how power relations affect these manoeuvres. It examines the nature of value capture and power relations in the global supply of visual effects (VFX) services and the range of strategies VFX firms adopt to capture higher value in the global value chain. The analysis is based on a total of thirty-six interviews with informants in the industry in Australia, the United Kingdom and Canada, and a database of VFX credits for 3323 visual products for 640 VFX firms.
Resumo:
The decision of whether a cell should live or die is fundamental for the wellbeing of all organisms. Despite intense investigation into cell growth and proliferation, only recently has the essential and equally important idea that cells control/programme their own demise for proper maintenance of cellular homeostasis gained recognition. Furthermore, even though research into programmed cell death (PCD) has been an extremely active area of research there are significant gaps in our understanding of the process in plants. In this review, we discuss PCD during plant development and pathogenesis, and compare/contrast this with mammalian apoptosis. © 2008 Blackwell Publishing Ltd.
Resumo:
This paper presents an approach to building an observation likelihood function from a set of sparse, noisy training observations taken from known locations by a sensor with no obvious geometric model. The basic approach is to fit an interpolant to the training data, representing the expected observation, and to assume additive sensor noise. This paper takes a Bayesian view of the problem, maintaining a posterior over interpolants rather than simply the maximum-likelihood interpolant, giving a measure of uncertainty in the map at any point. This is done using a Gaussian process framework. To validate the approach experimentally, a model of an environment is built using observations from an omni-directional camera. After a model has been built from the training data, a particle filter is used to localise while traversing this environment
Resumo:
Polymer nanocomposites (NC) are fabricated by incorporating well dispersed nanoscale particles within a polymer matrix. This study focuses on elastomeric polyurethane (PU) based nanocomposites, containing organically modified silicates (OMS), as bioactive materials. Nanocomposites incorporating chlorhexidine diacetate as an organic modifier (OM) were demonstrated to be antibacterial with a dose dependence related to both the silicate loading and the loading of OM. When the non-antibacterial OM dodecylamine was used, both cell and platelet adhesion were decreased on the nanocomposite surface. These results suggest that OM is released from the polymer and can impact on cell behaviour at the interface. Nanocomposites have potential use as bioactive materials in a range of biomedical applications.
Resumo:
The underlying objective of this study was to develop a novel approach to evaluate the potential for commercialisation of a new technology. More specifically, this study examined the 'ex-ante'. evaluation of the technology transfer process. For this purpose, a technology originating from the high technology sector was used. The technology relates to the application of software for the detection of weak signals from space, which is an established method of signal processing in the field of radio astronomy. This technology has the potential to be used in commercial and industrial areas other than astronomy, such as detecting water leakages in pipes. Its applicability to detecting water leakage was chosen owing to several problems with detection in the industry as well as the impact it can have on saving water in the environment. This study, therefore, will demonstrate the importance of interdisciplinary technology transfer. The study employed both technical and business evaluation methods including laboratory experiments and the Delphi technique to address the research questions. There are several findings from this study. Firstly, scientific experiments were conducted and these resulted in a proof of concept stage of the chosen technology. Secondly, validation as well as refinement of criteria from literature that can be used for „ex-ante. evaluation of technology transfer has been undertaken. Additionally, after testing the chosen technology.s overall transfer potential using the modified set of criteria, it was found that the technology is still in its early stages and will require further development for it to be commercialised. Furthermore, a final evaluation framework was developed encompassing all the criteria found to be important. This framework can help in assessing the overall readiness of the technology for transfer as well as in recommending a viable mechanism for commercialisation. On the whole, the commercial potential of the chosen technology was tested through expert opinion, thereby focusing on the impact of a new technology and the feasibility of alternate applications and potential future applications.
Resumo:
This paper is about planning paths from overhead imagery, the novelty of which is taking explicit account of uncertainty in terrain classification and spatial variation in terrain cost. The image is first classified using a multi-class Gaussian Process Classifier which provides probabilities of class membership at each location in the image. The probability of class membership at a particular grid location is then combined with a terrain cost evaluated at that location using a spatial Gaussian process. The resulting cost function is, in turn, passed to a planner. This allows both the uncertainty in terrain classification and spatial variations in terrain costs to be incorporated into the planned path. Because the cost of traversing a grid cell is now a probability density rather than a single scalar value, we can produce not only the most-likely shortest path between points on the map, but also sample from the cost map to produce a distribution of paths between the points. Results are shown in the form of planned paths over aerial maps, these paths are shown to vary in response to local variations in terrain cost.
Resumo:
Under pressure from both the ever increasing level of market competition and the global financial crisis, clients in consumer electronics (CE) industry are keen to understand how to choose the most appropriate procurement method and hence to improve their competitiveness. Four rounds of Delphi questionnaire survey were conducted with 12 experts in order to identify the most appropriate procurement method in the Hong Kong CE industry. Five key selection criteria in the CE industry are highlighted, including product quality, capability, price competition, flexibility and speed. This study also revealed that product quality was found to be the most important criteria for the “First type used commercially” and “Major functional improvements” projects. As for “Minor functional improvements” projects, price competition was the most crucial factor to be considered during the PP selection. These research findings provide owners with useful insights to select the procurement strategies.
Resumo:
Our cross-national field study of wine entrepreneurship in the “wrong” places provides some redress to the focus of the “regional advantage” literature on places that have already won and on the firms that benefit from “clusters” and other centers of industry advantage. Regional “disadvantage” is at best a shadowy afterthought to this literature. By poking around in these shadows, we help to synthesize and extend the incipient yet burgeoning literature on entrepreneurial “resourcefulness” and we contribute to the developing body of insights and theory pertinent to the numerous but often ignored firms and startups that mostly need to worry about how they will compete at all now if they are ever to have of chance of “winning” in the future. The core of our findings suggests that understandable – though contested – processes of ingenuity underlie entrepreneurial responses to regional disadvantage. Because we study entrepreneurship that from many angles simply does not make sense, we are also able to proffer a novel perspective on entrepreneurial sensemaking.