957 resultados para Cell Viability
Resumo:
The adenovirus type 5 E1A gene was originally developed as a gene therapy to inhibit tumorigenicity of HER-2-overexpressing cells by transcriptional downregulation of HER-2. Our goal is to improve the overall efficacy of E1A gene therapy. To achieve this goal, we have conducted two preclinical experiments. ^ First, we hypothesized that Bcl-2 overexpressing ovarian cancer is resistant to E1A gene therapy. This hypothesis is based on that the 19 kDa protein product of the adenoviral E1B gene which is homologous to Bcl-2 inhibits E1A-induced apoptosis. Treating high Bcl-2-xpressing cells with E1A in combination with an antisense oligonucleotide to Bcl-2 (Bcl-2-ASO) resulted in a significant decrease in cell viability due to an increased rate of apoptosis relative to cells treated with E1A alone. In an ovarian cancer xenograft model, mice implanted with low HER-2, high Bcl-2 cells, treated with E1A plus Bcl-2-ASO led to prolonged survival. Bcl-2 thus may serve as a predictive molecular marker enabling us to select patients with ovarian cancer who will benefit significantly from E1A gene therapy. ^ Second, we elucidated the molecular mechanism governing the anti-tumor effect of E1A in ovarian cancer to identify a more potent tumor suppressor gene. We identified PEA-15 (phospho-protein enriched in astrocytes) upregulated in E1A transfected low HER-2-expressing OVCAR-3 ovarian cancer cell, which showed decreased cell proliferation. PEA-15 moved ERK from the nucleus to the cytoplasm and inhibited ERK-dependent transcription and proliferation. Using small interfering RNA to knock down PEA-15 expression in OVCAR-3 cells made to constitutively express E1A resulted in accumulation of phosphoERK in the nucleus, an increase in Elk-1 activity, DNA synthesis, and anchorage-independent growth. PEA-15 also independently suppressed colony formation in some breast and ovarian cancer cell lines in which E1A is known to have anti-tumor activity. We conclude that the anti-tumor activity of E1A depends on PEA-15. ^ In summary, (1) Bcl-2 may serve as a predictive molecular marker of E1A gene therapy, allowing us to select patients and improve efficacy of E1A gene therapy. (2) PEA-15 was identified as a component of the molecular mechanism governing the anti-tumor activity of E1A in ovarian cancer, (3) PEA-15 may be developed as a novel therapeutic gene. ^
Resumo:
Bloom syndrome (BS) is an autosomal recessive disorder characterized by dwarfism, immunodeficiency, impaired fertility, and most importantly, early development of a broad range of cancers. The hallmark of BS cells is hyper-recombination, characterized by a drastically elevated frequency of sister chromatid exchange (SCE). BLM, the gene mutated in BS, encodes a DNA helicase of the RecQ protein family. BLM is thought to participate in several DNA transactions and to interact with many proteins involved in DNA replication, recombination, and repair. However, the precise function of BLM and the BLM-dependent anti-tumor mechanism remain obscure. ^ A novel protein, BLAP75 (BLM-associated polypeptide, 75KD), was identified to form an evolutionarily conserved complex with BLM and DNA topoisomerase IIIα (Topo IIIα). Our work demonstrates that loss of BLAP75 destabilized BLM and Topo IIIα proteins. BLAP75 colocalized with BLM in subnuclear foci in response to DNA damage and the recruitment of BLM to these foci was BLAP75-dependent. Moreover, depletion of BLAP75 by siRNA resulted in an elevated SCE rate similar to cells depleted of BLM by siRNA. In addition, RNAi-mediated silencing of BLAP75 greatly diminished cell viability. This cellular deficiency was rescued by expression of wild type BLAP75 but not BLAP75 with mutated conserved domain III, which abrogated the interaction between BLAP75, BLM and Topo IIIα, suggesting that the integrity of BLM-Topo IIIα-BLAP75 complex might be critical for cell survival. Finally, I found that BLAP75 was phosphorylated during mitosis and upon various DNA-damaging agents, implying that BLAP75 might also function in mitosis and DNA damage response. ^ Taken together, this study has defined BLAP75 as an integral component of the BLM complex to maintain genome stability. Our findings provide insights into the molecular mechanisms of the BLM helicase pathway and tumorigenesis process associated with these mechanisms. ^
Resumo:
Imatinib mesylate, a selective inhibitor of KIT, PDGFR, and Abl kinases, has shown significant success as a therapy for patients with advanced gastrointestinal stromal tumors (GISTs). However, the underlying mechanisms of imatinib-induced cytotoxicity are not well understood. Using gene expression profiling and real-time PCR for target validation, we identified insulin-like growth factor binding protein-3 (IGFBP3) to be to be up-regulated after imatinib treatment in imatinib-sensitive GISTs. IGFBP3 is a multifunctional protein that regulates cell proliferation and survival and mediates the effects of a variety of anti-cancer agents through IGF-dependent and IGF-independent mechanisms. Therefore, we hypothesized that IGFBP3 mediates GIST cell response to imatinib. To test this hypothesis, we manipulated IGFBP3 protein levels in two KIT mutant, imatinib-sensitive GIST cell lines and assessed the resultant changes in cell viability, survival, and imatinib sensitivity. In GIST882 cells, endogenous IGFBP3 was required for cell viability. However, inhibiting imatinib-induced IGFBP3 up-regulation by RNA interference or neutralization resulted in reduced drug sensitivity, suggesting that IGFBP3 sensitizes GIST882 cells to imatinib. GIST-T1 cells, on the other hand, had no detectable levels of endogenous IGFBP3, nor did imatinib induce IGFBP3 up-regulation, in contrast to our previous findings. IGFBP3 overexpression in GIST-T1 cells reduced viability but did not induce cell death; rather, the cells became polyploid through a mechanism that may involve attenuated Cdc20 expression and securin degradation. Moreover, IGFBP3 overexpression resulted in a loss of KIT activation and decreased levels of mature KIT. Consistent with this, GIST-T1 cells overexpressing IGFBP3 were less sensitive to imatinib. Furthermore, as neither GIST882 cells nor GIST-T1 cells expressed detectable levels of IGF-1R, IGFBP3 is likely not exerting its effects by modulating IGF signaling through IGF-1R or IR/IGF-1R hybrid receptors in these cell lines. Collectively, these findings demonstrate that IGFBP3 has cell-dependent effects and would, therefore, not be an ideal marker for identifying imatinib response in GISTs. Nevertheless, our results provide preliminary evidence that IGFBP3 may have some therapeutic benefits in GISTs. ^
Resumo:
The Ras family of small GTPases (N-, H-, and K-Ras) is a group of important signaling mediators. Ras is frequently activated in some cancers, while others maintain low level activity to achieve optimal cell growth. In cells with endogenously low levels of active Ras, increasing Ras signaling through the ERK and p38 MAPK pathways can cause growth arrest or cell death. Ras requires prenylation – the addition of a 15-carbon (farnesyl) or 20-carbon (geranylgeranyl) group – to keep the protein anchored into membranes for effective signaling. N- and K-Ras can be alternatively geranylgeranylated (GG’d) if farnesylation is inhibited but are preferentially farnesylated. Small molecule inhibitors of farnesyltransferase (FTIs) have been developed as a means to alter Ras signaling. Our initial studies with FTIs in malignant and non-malignant cells revealed FTI-induced cell cycle arrest, reduced proliferation, and increased Ras signaling. These findings led us to the hypothesis that FTI induced increased GG’d Ras. We further hypothesized that the specific effects of FTI on cell cycle and growth result from increased signal strength of GG’d Ras. Our results did show that increase in GG’d K-Ras in particular results in reduced cell viability and cell cycle arrest. Genetically engineered constructs capable of only one type of prenylation confirmed that GG’d K-Ras recapitulated the effect of FTI in 293T cells. In tumor cell lines ERK and p38 MAPK pathways were both strongly activated in response to FTI, indicating the increased activity of GG’d K-Ras results in antiproliferative signals specifically through these pathways. These results collectively indicate FTI increases active GG’d K-Ras which activates ERK and p38 MAPKs to reduced cell viability and induce cell cycle arrest in malignant cells. This is the first report that identifies increased activity of GG’d K-Ras contributes to antineoplastic effects from FTI by increasing the activity of downstream MAPKs. Our observations suggest increased GG’d K-Ras activity, rather than inhibition of farnesylated Ras, is a major source of the cytostatic and cytotoxic effects of FTI. Our data may allow for determination of which patients would benefit from FTI by excluding tumors or diseases which have strong K-Ras signaling.
Resumo:
Previous studies from our lab have shown distinctive patterns of expression of bcl-2 gene family members in human nonmelanoma skin cancer (NMSC). To further evaluate the significance of these observations and to study the effects of cell death deregulation during skin carcinogenesis, we generated a transgenic mouse model (HK1.bcl-2) using the human keratin 1 promoter to target the expression of a human bcl-2 minigene to the epidermis. Transgenic protein expression was confirmed in all the layers of the epidermis except the stratum corneum using immunohistochemistry. Multifocal epidermal hyperplasia, without associated hyperkeratosis, was observed in newborn HK1.bcl-2 mice. Immunofluorescence staining using monoclonal antibodies specific for a variety of differentiation markers revealed aberrant expression of keratin 6 (K6) in the transgenic epidermis. Epidermal proliferative indexes, assessed by anti-BrdUrd immunofluorescence staining, were similar in control and transgenic newborn mice, but suprabasal proliferating cells were seen within the hyperplastic areas of the transgenic mouse skin. Spontaneous apoptotic indices of the epidermis were similar in both control and HK1.bcl-2 transgenic newborn mice, however, after UV-B irradiation, the number of "sunburn cells" was significantly higher in the control compared to the HK1.bcl-2 transgenic animals.^ Adult HK1.bcl-2 and control littermate mice were used in UV-B and chemical carcinogenesis protocols including DMBA + TPA. UV-B irradiated control and HK1.bcl-2 mice had comparable incidence of tumors than the controls, but the mean latency period was significantly shorter in the HK1.bcl-2 transgenic. Both control and transgenic animals included in chemical carcinogenesis protocols required application of both the initiating (DMBA) and promoting (TPA) agents to develop tumors. The frequency, number, and latency of tumor formation was similar in both groups of animals, however, HK1.bcl-2 mice exhibited a rate of conversion from benign papilloma to carcinoma 2.5 times greater than controls.^ Similar carcinogenesis experiments were performed using newborn mice. HK1.bcl-2 mice treated with UV-B plus TPA have a three fold greater incidence of tumor formation compared to controls littermates. HK1.bcl-2 transgenic animals also exhibited a shorter latency for papilloma formation when treated with DMBA plus TPA.^ HK1.bcl-2/v-Ha-ras double transgenic mice shared phenotypic features of both HK1.v-Ha-ras and HK1.bcl-2 transgenic mice, and exhibited focal areas of augmented hyperplasia. These double transgenic mice were susceptible to tumor formation by treatment with TPA alone.^ Cultures of primary keratinocytes were established from control, HK1.bcl-2, HK1.Ha-ras, and HK1.bcl-2/v-Ha-ras newborn mice. Cell viability was determined after exposure of the cells to UV-B irradiation, DMBA, TPA, or TGF-$\beta$1. Internucleosomal DNA fragmentation ("ladders") and morphological cellular changes compatible with apoptotic cell death were observed after the application of all these agents. HK1.bcl-2 keratinocytes were resistant to cell death induction by all of these agents except TGF-$\beta$1. HK1.Ha-ras cells had a higher spontaneous rate of cell death which could be compensated by co-expression of bcl-2.^ These findings suggest that bcl-2 dependent cell death suppression may be an important component of multistep skin carcinogenesis. ^
Resumo:
The most common molecular alterations observed in prostate cancer are increased bcl-2 protein expression and mutations in p53. Understanding the molecular alterations associated with prostate cancer are critical for successful treatment and designing new therapeutic interventions. Hormone-ablation therapy remains the most effective nonsurgical treatment; however, most patients will relapse with hormone-independent, refractory disease. This study addresses how hormone-ablation therapy may increase bcl-2, develops a transgenic model to elucidate the role of bcl-2 multistep prostate carcinogenesis, and assesses how bcl-2 may confer resistance to cell death induction using adenoviral wild-type p53 gene therapy. ^ Two potential androgen response elements were identified in the bcl-2 promoter. Bcl-2 promoter luciferase constructs were transfected into the hormone- sensitive LNCaP prostate cell line. In the presence of dihydrotestosterone, the activity of one bcl-2 promoter luciferase construct was repressed 40% compared to control cells grown in charcoal-stripped serum. Additionally, it was demonstrated that both bcl-2 mRNA and protein were downregulated in the LNCaP cells grown in the presence DHT. This suggests that DHT represses bcl-2 expression through possible direct and indirect mechanisms and that hormone-ablation therapy may actually increases bcl-2 protein. ^ To determine the role of bcl-2 in prostate cancer progression in vivo, probasin-bcl-2 mice were generated where human bcl-2 was targeted to the prostate. Increased bcl-2 expression rendered the ventral prostate more resistant to apoptosis induction following castration. When the probasin-bcl-2 mice were crossed with TRAMP mice, the latency to tumor formation was decreased. The expression of bcl-2 in the double transgenic mice did not affect the incidence of metastases. The double transgenic model will facilitate the study of in vivo effects of specific genetic lesions during the pathogenesis of prostate cancer. ^ The effects of increased bcl-2 protein on wild-type adenoviral p53-mediated cell death were determined in prostatic cell lines. Increased bcl-2 protected PC3 and DU145 cell lines, which possess mutant p53, from p53-mediated cell death and reductions in cell viability. Bcl-2 did not provide the same protective effect in LNCaP cell line, which expresses wild-type p53. This suggests that the ability of bcl-2 to protect against p53-mediated cell death is dependent upon the endogenous status of p53. ^
Resumo:
Phosphatidylinositol 3-kinase (PI3K) phosphorylates membrane constituent phosphatidylinositols, producing second messengers that link membrane bound receptor signals to cellular proliferation and survival. PI3K, a heterodimer consisting of a catalytic p110 subunit and a regulatory p85 subunit, can be activated through induced association with other signaling molecules. The p85 subunit serves to both stabilize and inactivate p110. The inhibitory activity of P85 is relieved by occupancy of the N terminal SH2 domain by phosphorylated tyrosine. PI3K becomes phosphorylated and activated subsequent to a variety of stimuli. Indeed, Src family kinases have been demonstrated to phosphorylate p85 at tyrosine 688, but the role of phosphorylation in PI3K function is unclear. We decided to evaluate the importance of tyrosine phosphorylation to PI3K activity. We demonstrate that tyrosine phosphorylated p85 is associated with a higher specific activity than is non-phosphorylated PI3K. Wild type p85 inhibits PI3K enzyme activity, a process accentuated by mutation of tyrosine 688 to alanine and reversed by mutation to aspartate which functions as a phosphotyrosine mimic in multiple systems. Strikingly, the Y688D mutation completely reverses the p85 inhibitory activity on cell viability and activation of downstream protein NFkB. We demonstrate that tyrosine phosphorylated Y688 or Y688D is sufficient to bind the p85 N terminal SH2 domain, either within full length p85 or in an isolated N terminal SH2 domain, suggesting the possibility of an intramolecular interaction between phosphorylated Y688 and the p85 N terminal SH2 domain that can relieve the p85-induced inhibition of p110. Further, we provide evidence that dephosphorylation of Y688 reduces phosphorylation-induced PI3K activity. We demonstrate that tyrosine phosphatase SHP-1 can physically associate with p85 in a SH2-mediated interaction with the C terminal tail of SHP-1. This association is concomitant with both p85 dephosphorylation and decreased PI3K activity. Altogether, our data suggests the phosphorylation state of p85 is the focal point of a novel mechanism for PI3K activity regulation. As PI3K has been shown to be involved in the vital physiological processes of cell proliferation and apoptosis, a thorough understanding of the regulation of this signaling protein may provide opportunities for the design of novel treatments for cancer. ^
Resumo:
Los mastocitos son células del tejido conectivo que participan en la génesis y modulación de las respuestas inflamatorias celulares. En trabajos previos hemos demostrado que xanthatina (xanthanólido sesquiterpeno aislado de Xanthium cavanillesii Schouw) inhibe la activación de mastocitos inducida por secretagogos experimentales. Sin embargo, se desconoce su efecto sobre la activación de mastocitos inducida por estímulos fisiopatológicos. Estos estímulos incluyen, entre otros, los neuropéptidos pro-inflamatorios sustancia P y neurotensina, responsables de una de las principales vías de inflamación neurogénica. El objetivo del presente trabajo fue estudiar el efecto de xanthatina sobre la activación de mastocitos inducida por sustancia P y neurotensina. Mastocitos peritoneales de rata se incubaron con: 1) PBS (basal); 2) sustancia P (100 Fm); 3) neurotensina (50 Fm); 4) xanthatina (8-320 Fm)+sustancia P; 5) xanthatina (8-320 Fm)+neurotensina. La viabilidad de los mastocitos se evaluó con azul tripán. En las soluciones de incubación se cuantificó serotonina liberada (marcador de activación). En las células se cuantificó serotonina remanente (no liberada) y se analizó la morfología celular por microscopía óptica y electrónica de transmisión. Tratamiento estadístico: ANOVA-1 y Tukey-Kramer. La incubación de mastocitos con xanthatina inhibió (P<0,01), en forma dosisdependiente, la liberación de serotonina inducida por sustancia P y neurotensina, sin modificar la viabilidad celular. Los mastocitos tratados con neuropéptidos mostraron características morfológicas de degranulación, mientras que la morfología de los mastocitos tratados con xanthatina+neuropéptido fue semejante a los basales. En conclusión, xanthatina inhibe la activación de mastocitos inducida por sustancia P y por neurotensina. Este sesquiterpeno podría representar una nueva alternativa en el tratamiento de las inflamaciones neurogénicas.
Resumo:
Histone H4 can be acetylated at N-terminal lysines K5, K8, K12, and K16, but newly synthesized H4 is diacetylated at K5/K12 in diverse organisms. This pattern is widely thought to be important for histone deposition onto replicating DNA. To investigate the importance of K5/K12 we have mutagenized these lysines in yeast and assayed for nucleosome assembly. Assaying was done in the absence of the histone H3 N terminus, which has functions redundant with those of H4 in histone deposition. Nucleosome assembly was assayed by three methods. Because nucleosome depletion may be lethal, we examined cell viability. We also analyzed nucleosome assembly in vivo and in vitro by examining plasmid superhelicity density in whole cells and supercoiling in yeast cell extracts. All three approaches demonstrate that mutagenizing K5 and K12 together does not prevent cell growth and histone deposition in vivo or in vitro. Therefore, K5/K12 cannot be required for nucleosome assembly in yeast. It is only when the first three sites of acetylation—K5, K8, and K12—are mutagenized simultaneously that lethality occurs and assembly is most strongly decreased both in vivo and in vitro. These data argue for the redundancy of sites K5, K8, and K12 in the deposition of yeast histone H4.
Resumo:
Amyloid β peptide (Aβ) is thought to play a central role in the pathogenesis of Alzheimer disease (AD). How Aβ induces neurodegeneration in AD is not known. A connection between AD and cholesterol metabolism is suggested by the finding that people with the apolipoprotein E4 allele, a locus coding for a cholesterol-transporting lipoprotein, have a modified risk for both late-onset AD and cardiovascular disease. In the present study we show that both Aβ and submicromolar concentrations of free cholesterol alter the trafficking of a population of intracellular vesicles that are involved in the transport of the reduced form of the tetrazolium dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT formazan), the formation of which is a widely used cell viability assay. Treatments that change cellular free cholesterol levels also modulate the trafficking of the MTT formazan-containing vesicles, suggesting that the trafficking of these vesicles may be regulated by free cholesterol under physiological conditions. In addition, Aβ decreases cholesterol esterification and changes the distribution of free cholesterol in neurons. These results suggest that the MTT formazan-transporting vesicles may be involved in cellular cholesterol homeostasis and that the alteration of vesicle transport by Aβ may be relevant to the chronic neurodegeneration observed in AD.
Resumo:
Histones H3 and H4 have a well defined structural role in the nucleosome and an established role in the regulation of transcription. We have made use of a microinjection strategy using Xenopus embryos to define the minimal structural components of H3 and H4 necessary for nucleosome assembly into metazoan chromosomes in vivo. We find that both the N-terminal tail of H4, including all sites of acetylation, and the C-terminal α-helix of the H4 histone fold domain are dispensable for chromatin assembly. The N-terminal tail and an N-terminal α-helix of H3 are also dispensable for chromatin assembly. However, the remainder of the H3 and H4 histone folds are essential for incorporation of these proteins into chromatin. We suggest that elements of the histone fold domain maintain both nucleosomal integrity and have distinct functions essential for cell viability.
Resumo:
Under physiological conditions, the Escherichia coli cytoplasm is maintained in a reduced state that strongly disfavors the formation of stable disulfide bonds in proteins. However, mutants in which the reduction of both thioredoxins and glutathione is impaired (trxB gor mutants) accumulate oxidized, enzymatically active alkaline phosphatase in the cytoplasm. These mutants grow very poorly in the absence of an exogenous reductant and accumulate extragenic suppressors at a high frequency. One such suppressor strain, FA113, grows almost as rapidly as the wild type in the absence of reductant, exhibits slightly faster kinetics of disulfide bond formation, and has fully induced activity of the transcriptional activator, OxyR. FA113 gave substantially higher yields of properly oxidized proteins compared with wild-type or trxB mutant strains. For polypeptides with very complex patterns of disulfide bonds, such as vtPA and the full-length tPA, the amount of active protein was further enhanced up to 15-fold by co-expression of TrxA (thioredoxin 1) mutants with different redox potentials, or 20-fold by the protein disulfide isomerase, DsbC. Remarkably, higher yields of oxidized, biologically active proteins were obtained by expression in the cytoplasm of E. coli FA113 compared with what could be achieved via secretion into the periplasm of a wild-type strain, even under optimized conditions. These results demonstrate that the cytoplasm can be rendered sufficiently oxidizing to allow efficient formation of native disulfide bonds without compromising cell viability.
A Role for Tlg1p in the Transport of Proteins within the Golgi Apparatus of Saccharomyces cerevisiae
Resumo:
Members of the syntaxin protein family participate in the docking–fusion step of several intracellular vesicular transport events. Tlg1p has been identified as a nonessential protein required for efficient endocytosis as well as the maintenance of normal levels of trans-Golgi network proteins. In this study we independently describe Tlg1p as an essential protein required for cell viability. Depletion of Tlg1p in vivo causes a defect in the transport of the vacuolar protein carboxypeptidase Y through the early Golgi. Temperature-sensitive (ts) mutants of Tlg1p also accumulate the endoplasmic reticulum/cis-Golgi form of carboxypeptidase Y at the nonpermissive temperature (38°C) and exhibit underglycosylation of secreted invertase. Overexpression of Tlg1p complements the growth defect of vti1-11 at the nonpermissive temperature, whereas incomplete complementation was observed with vti1-1, further suggesting a role for Tlg1p in the Golgi apparatus. Overexpression of Sed5p decreases the viability of tlg1 ts mutants compared with wild-type cells, suggesting that tlg1 ts mutants are more susceptible to elevated levels of Sed5p. Tlg1p is able to bind His6-tagged Sec17p (yeast α-SNAP) in a dose-dependent manner and enters into a SNARE complex with Vti1p, Tlg2p, and Vps45p. Morphological analyses by electron microscopy reveal that cells depleted of Tlg1p or tlg1 ts mutants incubated at the restrictive temperature accumulate 40- to 50-nm vesicles and experience fragmentation of the vacuole.
Resumo:
Attachment of ubiquitin to cellular proteins frequently targets them to the 26S proteasome for degradation. In addition, ubiquitination of cell surface proteins stimulates their endocytosis and eventual degradation in the vacuole or lysosome. In the yeast Saccharomyces cerevisiae, ubiquitin is a long-lived protein, so it must be efficiently recycled from the proteolytic intermediates to which it becomes linked. We identified previously a yeast deubiquitinating enzyme, Doa4, that plays a central role in ubiquitin-dependent proteolysis by the proteasome. Biochemical and genetic data suggest that Doa4 action is closely linked to that of the proteasome. Here we provide evidence that Doa4 is required for recycling ubiquitin from ubiquitinated substrates targeted to the proteasome and, surprisingly, to the vacuole as well. In the doa4Δ mutant, ubiquitin is strongly depleted under certain conditions, most notably as cells approach stationary phase. Ubiquitin depletion precedes a striking loss of cell viability in stationary phase doa4Δ cells. This loss of viability and several other defects of doa4Δ cells are rescued by provision of additional ubiquitin. Ubiquitin becomes depleted in the mutant because it is degraded much more rapidly than in wild-type cells. Aberrant ubiquitin degradation can be partially suppressed by mutation of the proteasome or by inactivation of vacuolar proteolysis or endocytosis. We propose that Doa4 helps recycle ubiquitin from both proteasome-bound ubiquitinated intermediates and membrane proteins destined for destruction in the vacuole.
Resumo:
We describe the isolation of fission yeast homologues of tubulin-folding cofactors B (Alp11) and E (Alp21), which are essential for cell viability and the maintenance of microtubules. Alp11B contains the glycine-rich motif (the CLIP-170 domain) involved in microtubular functions, whereas, unlike mammalian cofactor E, Alp21E does not. Both mammalian and yeast cofactor E, however, do contain leucine-rich repeats. Immunoprecipitation analysis shows that Alp11B interacts with both α-tubulin and Alp21E, but not with the cofactor D homologue Alp1, whereas Alp21E also interacts with Alp1D. The cellular amount of α-tubulin is decreased in both alp1 and alp11 mutants. Overproduction of Alp11B results in cell lethality and the disappearance of microtubules, which is rescued by co-overproduction of α-tubulin. Both full-length Alp11B and the C-terminal third containing the CLIP-170 domain localize in the cytoplasm, and this domain is required for efficient binding to α-tubulin. Deletion of alp11 is suppressed by multicopy plasmids containing either alp21+ or alp1+, whereas alp21 deletion is rescued by overexpression of alp1+ but not alp11+. Finally, the alp1 mutant is not complemented by either alp11+ or alp21+. The results suggest that cofactors operate in a linear pathway (Alp11B-Alp21E-Alp1D), each with distinct roles.