984 resultados para Carnap, Rudolf
Resumo:
A life-size mechanical middle ear model and human temporal bones were used to evaluate three different middle ear transducers for implantable hearing aids: the driving rod transducer (DRT), the floating mass transducer (FMT) or vibrant sound bridge, and the contactless transducer (CLT). Results of the experiments with the mechanical model were within the range of the results for human temporal bones. However, results with the mechanical model showed better reproducibility. The handling of the mechanical model was considerably simpler and less time-consuming. Systematic variations of mounting parameters showed that the angle of the rod has virtually no effect on the output of the DRT, the mass loading on the cable of the FMT has a larger impact on the output than does the tightness of crimping, and the output level of the CLT can be increased by 10 dB by optimizing the mounting parameters.
Resumo:
CONCLUSIONS: Speech understanding is better with the Baha Divino than with the Baha Compact in competing noise from the rear. No difference was found for speech understanding in quiet. Subjectively, overall sound quality and speech understanding were rated better for the Baha Divino. OBJECTIVES: To compare speech understanding in quiet and in noise and subjective ratings for two different bone-anchored hearing aids: the recently developed Baha Divino and the Baha Compact. PATIENTS AND METHODS: Seven adults with bilateral conductive or mixed hearing losses who were users of a bone-anchored hearing aid were tested with the Baha Compact in quiet and in noise. Tests were repeated after 3 months of use with the Baha Divino. RESULTS: There was no significant difference between the two types of Baha for speech understanding in quiet when tested with German numbers and monosyllabic words at presentation levels between 50 and 80 dB. For speech understanding in noise, an advantage of 2.3 dB for the Baha Divino vs the Baha Compact was found, if noise was emitted from a loudspeaker to the rear of the listener and the directional microphone noise reduction system was activated. Subjectively, the Baha Divino was rated statistically significantly better in terms of overall sound quality.
Resumo:
CONCLUSION: Our self-developed planning and navigation system has proven its capacity for accurate surgery on the anterior and lateral skull base. With the incorporation of augmented reality, image-guided surgery will evolve into 'information-guided surgery'. OBJECTIVE: Microscopic or endoscopic skull base surgery is technically demanding and its outcome has a great impact on a patient's quality of life. The goal of the project was aimed at developing and evaluating enabling navigation surgery tools for simulation, planning, training, education, and performance. This clinically applied technological research was complemented by a series of patients (n=406) who were treated by anterior and lateral skull base procedures between 1997 and 2006. MATERIALS AND METHODS: Optical tracking technology was used for positional sensing of instruments. A newly designed dynamic reference base with specific registration techniques using fine needle pointer or ultrasound enables the surgeon to work with a target error of < 1 mm. An automatic registration assessment method, which provides the user with a color-coded fused representation of CT and MR images, indicates to the surgeon the location and extent of registration (in)accuracy. Integration of a small tracker camera mounted directly on the microscope permits an advantageous ergonomic way of working in the operating room. Additionally, guidance information (augmented reality) from multimodal datasets (CT, MRI, angiography) can be overlaid directly onto the surgical microscope view. The virtual simulator as a training tool in endonasal and otological skull base surgery provides an understanding of the anatomy as well as preoperative practice using real patient data. RESULTS: Using our navigation system, no major complications occurred in spite of the fact that the series included difficult skull base procedures. An improved quality in the surgical outcome was identified compared with our control group without navigation and compared with the literature. The surgical time consumption was reduced and more minimally invasive approaches were possible. According to the participants' questionnaires, the educational effect of the virtual simulator in our residency program received a high ranking.
Resumo:
This paper presents a case of a 28-year-old male with a seizure episode and a 4-year history of intermittent tinnitus on the left ear. On computed tomography and magnetic resonance imaging, a density with rim enhancement was found at the temporal lobe, associated with mastoid tegmen destruction and middle ear mass, indicating cholesteatoma with complicating brain abscess. Evacuation of the brain abscess was performed with a combined otolaryngologic and neurosurgical procedures (canal wall-down mastoidectomy and temporal craniotomy). The pathology turned out to be infestation with Echinococcus granulosus.
Resumo:
We evaluated 4 men who had benign paroxysmal positional vertigo (BPPV) that occured several hours after intensive mountain biking but without head trauma. The positional maneuvers in the planes of the posterior and horizontal canals elicited BPPV, as well as transitory nystagmus. This was attributed to both the posterior and horizontal semicircular canals (SCCs) on the left side in 1 patient, in these 2 SCCs on the right side in another patient, and to the right posterior SCC in the other 2 patients. The symptoms disappeared after physiotherapeutic maneuvers in 2 patients and spontaneously in the other 2 patients. Cross-country or downhill mountain biking generates frequent vibratory impacts, which are only partially filtered through the suspension fork and the upper parts of the body. Biomechanically, during a moderate jump, before landing, the head is subjected to an acceleration close to negative 1 g, and during impact it is subjected to an upward acceleration of more than 2g. Repeated acceleration-deceleration events during intensive off-road biking might generate displacement and/or dislocation of otoconia from the otolithic organs, inducing the typical symptoms of BPPV. This new cause of posttraumatic BPPV should be considered as an injury of minor severity attributed to the practice of mountain biking.
Resumo:
Following the idea that response inhibition processes play a central role in concealing information, the present study investigated the influence of a Go/No-go task as an interfering mental activity, performed parallel to the Concealed Information Test (CIT), on the detectability of concealed information. 40 undergraduate students participated in a mock-crime experiment and simultaneously performed a CIT and a Go/No-go task. Electrodermal activity (EDA), respiration line length (RLL), heart rate (HR) and finger pulse waveform length (FPWL) were registered. Reaction times were recorded as behavioral measures in the Go/No-go task as well as in the CIT. As a within-subject control condition, the CIT was also applied without an additional task. The parallel task did not influence the mean differences of the physiological measures of the mock-crime-related probe and the irrelevant items. This finding might possibly be due to the fact that the applied parallel task induced a tonic rather than a phasic mental activity, which did not influence differential responding to CIT items. No physiological evidence for an interaction between the parallel task and sub-processes of deception (e.g. inhibition) was found. Subjects' performance in the Go/No-go parallel task did not contribute to the detection of concealed information. Generalizability needs further investigations of different variations of the parallel task.