991 resultados para Cardiac Ischemia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Transcranial Doppler (TCD) is widely used to monitor the temporal course of vasospasm after subarachnoid hemorrhage (SAH), but its ability to predict clinical deterioration or infarction from delayed cerebral ischemia (DCI) remains controversial. We sought to determine the prognostic utility of serial TCD examination after SAH. METHODS: We analyzed 1877 TCD examinations in 441 aneurysmal SAH patients within 14 days of onset. The highest mean blood flow velocity (mBFV) value in any vessel before DCI onset was recorded. DCI was defined as clinical deterioration or computed tomographic evidence of infarction caused by vasospasm, with adjudication by consensus of the study team. Logistic regression was used to calculate adjusted odds ratios for DCI risk after controlling for other risk factors. RESULTS: DCI occurred in 21% of patients (n = 92). Multivariate predictors of DCI included modified Fisher computed tomographic score (P = 0.001), poor clinical grade (P = 0.04), and female sex (P = 0.008). After controlling for these variables, all TCD mBFV thresholds between 120 and 180 cm/s added a modest degree of incremental predictive value for DCI at nearly all time points, with maximal sensitivity by SAH day 8. However, the sensitivity of any mBFV more than 120 cm/s for subsequent DCI was only 63%, with a positive predictive value of 22% among patients with Hunt and Hess grades I to III and 36% in patients with Hunt and Hess grades IV and V. Positive predictive value was only slightly higher if mBFV exceeded 180 cm/s. CONCLUSION: Increased TCD flow velocities imply only a mild incremental risk of DCI after SAH, with maximal sensitivity by day 8. Nearly 40% of patients with DCI never attained an mBFV more than 120 cm/s during the course of monitoring. Given the poor overall sensitivity of TCD, improved methods for identifying patients at high risk for DCI after SAH are needed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monocarboxylate transporters (MCTs) are essential for the use of lactate, an energy substrate known to be overproduced in brain during an ischemic episode. The expression of MCT1 and MCT2 was investigated at 48 h of reperfusion from focal ischemia induced by unilateral extradural compression in Wistar rats. Increased MCT1 mRNA expression was detected in the injured cortex and hippocampus of compressed animals compared to sham controls. In the contralateral, uncompressed hemisphere, increases in MCT1 mRNA level in the cortex and MCT2 mRNA level in the hippocampus were noted. Interestingly, strong MCT1 and MCT2 protein expression was found in peri-lesional macrophages/microglia and in an isolectin B4+/S100beta+ cell population in the corpus callosum. In vitro, MCT1 and MCT2 protein expression was observed in the N11 microglial cell line, whereas an enhancement of MCT1 expression by tumor necrosis factor-alpha (TNF-alpha) was shown in these cells. Modulation of MCT expression in microglia suggests that these transporters may help sustain microglial functions during recovery from focal brain ischemia. Overall, our study indicates that changes in MCT expression around and also away from the ischemic area, both at the mRNA and protein levels, are a part of the metabolic adaptations taking place in the brain after ischemia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Promazine hydrochloride was injected accidentally in the antecubital artery of a 42-year-old woman, resulting in severe ischemia of the second and third fingers of her right hand which lasted for four days before she was hospitalized. Vasodilation by combining axillary plexus block and intravenous sodium nitroprusside did not improve ischemia and local thrombolysis was performed using recombinant tissue-type plasminogen activator (50 mg over 8 hours), resulting in normalization of digital pressure in one of the two affected fingers. The outcome was favourable and amputation could be avoided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

D-JNKI1, a cell-permeable peptide inhibitor of the c-Jun N-terminal kinase (JNK) pathway, has been shown to be a powerful neuroprotective agent after focal cerebral ischemia in adult mice and young rats. We have investigated the potential neuroprotective effect of D-JNKI1 and the involvement of the JNK pathway in a neonatal rat model of cerebral hypoxia-ischemia. Seven-day-old rats underwent a permanent ligation of the right common carotid artery followed by 2h of hypoxia (8% oxygen). Treatment with D-JNKI1 (0.3mg/kg intraperitoneally) significantly reduced early calpain activation, late caspase-3 activation and, in the thalamus, autophagosome formation, indicating an involvement of JNK in different types of cell death: necrotic, apoptotic and autophagic. However the size of the lesion was unchanged. Further analysis showed that neonatal hypoxia-ischemia induced an immediate decrease in JNK phosphorylation (reflecting mainly P-JNK1) followed by a slow progressive increase (including P-JNK3 54kDa), whereas c-jun and c-fos expression were both strongly activated immediately after hypoxia-ischemia. In conclusion, unlike in adult ischemic models, JNK is only moderately activated after severe cerebral hypoxia-ischemia in neonatal rats and the observed positive effects of D-JNKI1 are insufficient to give neuroprotection. Thus, for perinatal asphyxia, D-JNKI1 can only be considered in association with other therapies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Acute kidney injury (AKI) is common in patients undergoing cardiac surgery among whom it is associated with poor outcomes, prolonged hospital stays and increased mortality. Statin drugs can produce more than one effect independent of their lipid lowering effect, and may improve kidney injury through inhibition of postoperative inflammatory responses. OBJECTIVES: This review aimed to look at the evidence supporting the benefits of perioperative statins for AKI prevention in hospitalised adults after surgery who require cardiac bypass. The main objectives were to 1) determine whether use of statins was associated with preventing AKI development; 2) determine whether use of statins was associated with reductions in in-hospital mortality; 3) determine whether use of statins was associated with reduced need for RRT; and 4) determine any adverse effects associated with the use of statins. SEARCH METHODS: We searched the Cochrane Renal Group's Specialised Register to 13 January 2015 through contact with the Trials' Search Co-ordinator using search terms relevant to this review. SELECTION CRITERIA: Randomised controlled trials (RCTs) that compared administration of statin therapy with placebo or standard clinical care in adult patients undergoing surgery requiring cardiopulmonary bypass and reporting AKI, serum creatinine (SCr) or need for renal replacement therapy (RRT) as an outcome were eligible for inclusion. All forms and dosages of statins in conjunction with any duration of pre-operative therapy were considered for inclusion in this review. DATA COLLECTION AND ANALYSIS: All authors extracted data independently and assessments were cross-checked by a second author. Likewise, assessment of study risk of bias was initially conducted by one author and then by a second author to ensure accuracy. Disagreements were arbitrated among authors until consensus was reached. Authors from two of the included studies provided additional data surrounding post-operative SCr as well as need for RRT. Meta-analyses were used to assess the outcomes of AKI, SCr and mortality rate. Data for the outcomes of RRT and adverse effects were not pooled. Adverse effects taken into account were those reported by the authors of included studies. MAIN RESULTS: We included seven studies (662 participants) in this review. All except one study was assessed as being at high risk of bias. Three studies assessed atorvastatin, three assessed simvastatin and one investigated rosuvastatin. All studies collected data during the immediate perioperative period only; data collection to hospital discharge and postoperative biochemical data collection ranged from 24 hours to 7 days. Overall, pre-operative statin treatment was not associated with a reduction in postoperative AKI, need for RRT, or mortality. Only two studies (195 participants) reported postoperative SCr level. In those studies, patients allocated to receive statins had lower postoperative SCr concentrations compared with those allocated to no drug treatment/placebo (MD 21.2 µmol/L, 95% CI -31.1 to -11.1). Adverse effects were adequately reported in only one study; no difference was found between the statin group compared to placebo. AUTHORS' CONCLUSIONS: Analysis of currently available data did not suggest that preoperative statin use is associated with decreased incidence of AKI in adults after surgery who required cardiac bypass. Although a significant reduction in SCr was seen postoperatively in people treated with statins, this result was driven by results from a single study, where SCr was considered as a secondary outcome. The results of the meta-analysis should be interpreted with caution; few studies were included in subgroup analyses, and significant differences in methodology exist among the included studies. Large high quality RCTs are required to establish the safety and efficacy of statins to prevent AKI after cardiac surgery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a finite element approximation of a system of partial differential equations describing the coupling between the propagation of electrical potential and large deformations of the cardiac tissue. The underlying mathematical model is based on the active strain assumption, in which it is assumed that a multiplicative decomposition of the deformation tensor into a passive and active part holds, the latter carrying the information of the electrical potential propagation and anisotropy of the cardiac tissue into the equations of either incompressible or compressible nonlinear elasticity, governing the mechanical response of the biological material. In addition, by changing from an Eulerian to a Lagrangian configuration, the bidomain or monodomain equations modeling the evolution of the electrical propagation exhibit a nonlinear diffusion term. Piecewise quadratic finite elements are employed to approximate the displacements field, whereas for pressure, electrical potentials and ionic variables are approximated by piecewise linear elements. Various numerical tests performed with a parallel finite element code illustrate that the proposed model can capture some important features of the electromechanical coupling, and show that our numerical scheme is efficient and accurate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Buchheit, M, Al Haddad, H, Millet GP, Lepretre, PM, Newton, M, and Ahmaidi, S. Cardiorespiratory and cardiac autonomic responses to 30-15 Intermittent Fitness Test in team sport players. J Strength Cond Res 23(1): xxx-xxx, 2009-The 30-15 Intermittent Fitness Test (30-15IFT) is an attractive alternative to classic continuous incremental field tests for defining a reference velocity for interval training prescription in team sport athletes. The aim of the present study was to compare cardiorespiratory and autonomic responses to 30-15IFT with those observed during a standard continuous test (CT). In 20 team sport players (20.9 +/- 2.2 years), cardiopulmonary parameters were measured during exercise and for 10 minutes after both tests. Final running velocity, peak lactate ([La]peak), and rating of perceived exertion (RPE) were also measured. Parasympathetic function was assessed during the postexercise recovery phase via heart rate (HR) recovery time constant (HRRtau) and HR variability (HRV) vagal-related indices. At exhaustion, no difference was observed in peak oxygen uptake (&OV0312;o2peak), respiratory exchange ratio, HR, or RPE between 30-15IFT and CT. In contrast, 30-15IFT led to significantly higher minute ventilation, [La]peak, and final velocity than CT (p < 0.05 for all parameters). All maximal cardiorespiratory variables observed during both tests were moderately to well correlated (e.g., r = 0.76, p = 0.001 for &OV0312;o2peak). Regarding ventilatory thresholds (VThs), all cardiorespiratory measurements were similar and well correlated between the 2 tests. Parasympathetic function was lower after 30-15IFT than after CT, as indicated by significantly longer HHRtau (81.9 +/- 18.2 vs. 60.5 +/- 19.5 for 30-15IFT and CT, respectively, p < 0.001) and lower HRV vagal-related indices (i.e., the root mean square of successive R-R intervals differences [rMSSD]: 4.1 +/- 2.4 and 7.0 +/- 4.9 milliseconds, p < 0.05). In conclusion, the 30-15IFT is accurate for assessing VThs and &OV0312;o2peak, but it alters postexercise parasympathetic function more than a continuous incremental protocol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract The cardiac sodium channel Nav1.5 plays a key role in cardiac excitability and conduction. Its importance for normal cardiac function has been highlighted by descriptions of numerous mutations of SCN5A (the gene encoding Nav1.5), causing cardiac arrhythmias which can lead to sudden cardiac death. The general aim of my PhD research project has been to investigate the regulation of Nav1.5 along two main axes: (1) We obtained experimental evidence revealing an interaction between Nav1.5 and a multiprotein complex comprising dystrophin. The first part of this study reports the characterization of this interaction. (2) The second part of the study is dedicated to the regulation of the cardiac sodium channel by the mineralocorticoid hormone named aldosterone. (1) Early in this study, we showed that Nav1.5 C-terminus was associated with dystrophin and that this interaction was mediated by syntrophin proteins. We used dystrophin-deficient mdx5cv mice to study the role of this interaction. We reported that dystrophin deficiency led to a reduction of both Nav1.5 protein level and the sodium current (INa). We also found that mdx5cv mice displayed atrial and ventricular conduction defects. Our results also indicated that proteasome inhibitor MG132 treatment of mdx5cv mice rescued Nav1.5 protein level and INa in cardiac tissue. (2) We showed that aldosterone treatment of mice cardiomyocytes led to an increase of the sodium current with no modification of Nav1.5 transcript and protein level. Altogether, these results suggest that the sodium current can be increased by distribution of intracellular pools of protein to the plasma membrane (e.g. upon aldosterone stimulation) and that interaction with dystrophin multiprotein complex is required for the stabilization of the channel at the plasma membrane. Finally, we obtained preliminary results suggesting that the proteasome could regulate Nav1.5 in mdx5cv mice. This study defines regulatory mechanisms of Nav1.5 which could play an important role in cardiac arrhythmia and bring new insight in cardiac conduction alterations observed in patients with dystrophinopathies. Moreover, this work suggests that Brugada syndrome, and some of the cardiac alterations seen in Duchenne patients may be caused by overlapping molecular mechanisms leading to a reduction of the cardiac sodium current.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cardiac failure is one of the leading causes of mortality in developed countries. As life expectancies of the populations of these countries grow, the number of patients suffering from cardiac insufficiency also increase. Effective treatments including the use of calcium sensitisers are being sought. They cause a positive inodilatory effect on cardio-myocytes without deleterious effects (arrhythmias) resulting from increases in intracellular calcium concentration. Levosimendan is a novel calcium sensitiser that hasbeen proved to be a welltolerated and effective treatment for patients with severe decompensated heart failure. Cardiac troponin C (cTnC) is its target protein. However, there have been controversies about the interactions between levosimendan and cTnC. Some of these controversies have been addressed in this dissertation. Furthermore, studies on the calcium sensitising mechanism based on the interactions between levosimendan and cTnC as followed by nuclear magnetic resonance(NMR) are presented and discussed. Levosimendan was found to interact with bothdomains of the calcium-saturated cTnC in the absence of cardiac troponin I (cTnI). In the presence of cTnI, the C-domain binding site was blocked and levosimendan interacted only with the regulatory domain of cTnC. This interaction may have caused the observed calcium sensitising effect by priming the N-domain for cTnI binding thereby extending the lifetime of that complex. It is suggested that this is achieved by shifting the equilibrium between open and closed conformations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose of reviewTherapeutic hypothermia and aggressive management of postresuscitation disease considerably improved outcome after adult cardiac arrest over the past decade. However, therapeutic hypothermia alters prognostic accuracy. Parameters for outcome prediction, validated by the American Academy of Neurology before the introduction of therapeutic hypothermia, need further update.Recent findingsTherapeutic hypothermia delays the recovery of motor responses and may render clinical evaluation unreliable. Additional modalities are required to predict prognosis after cardiac arrest and therapeutic hypothermia. Electroencephalography (EEG) can be performed during therapeutic hypothermia or shortly thereafter; continuous/reactive EEG background strongly predicts good recovery from cardiac arrest. On the contrary, unreactive/spontaneous burst-suppression EEG pattern, together with absent N20 on somatosensory evoked potentials (SSEP), is almost 100% predictive of irreversible coma. Therapeutic hypothermia alters the predictive value of serum markers of brain injury [neuron-specific enolase (NSE), S-100B]. Good recovery can occur despite NSE levels >33 mu g/l, thus this cut-off value should not be used to guide therapy. Diffusion MRI may help predicting long-term neurological sequelae of hypoxic-ischemic encephalopathy.SummaryAwakening from postanoxic coma is increasingly observed, despite early absence of motor signs and frank elevation of serum markers of brain injury. A new multimodal approach to prognostication is therefore required, which may particularly improve early prediction of favorable clinical evolution after cardiac arrest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Cardiac arrest causes ischaemic brain injury. Arterial carbon dioxide tension (PaCO2) is a major determinant of cerebral blood flow. Thus, mild hypercapnia in the 24 h following cardiac arrest may increase cerebral blood flow and attenuate such injury. We describe the Carbon Control and Cardiac Arrest (CCC) trial. METHODS/DESIGN: The CCC trial is a pilot multicentre feasibility, safety and biological efficacy randomized controlled trial recruiting adult cardiac arrest patients admitted to the intensive care unit after return of spontaneous circulation. At admission, using concealed allocation, participants are randomized to 24 h of either normocapnia (PaCO2 35 to 45 mmHg) or mild hypercapnia (PaCO2 50 to 55 mmHg). Key feasibility outcomes are recruitment rate and protocol compliance rate. The primary biological efficacy and biological safety measures are the between-groups difference in serum neuron-specific enolase and S100b protein levels at 24 h, 48 h and 72 h. Secondary outcome measure include adverse events, in-hospital mortality, and neurological assessment at 6 months. DISCUSSION: The trial commenced in December 2012 and, when completed, will provide clinical evidence as to whether targeting mild hypercapnia for 24 h following intensive care unit admission for cardiac arrest patients is feasible and safe and whether it results in decreased concentrations of neurological injury biomarkers compared with normocapnia. Trial results will also be used to determine whether a phase IIb study powered for survival at 90 days is feasible and justified. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry ACTRN12612000690853 .

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND AIM OF THE STUDY: Percutaneous coronary interventions (PCI) are frequently performed before coronary artery bypass graft (CABG) surgery. This study sought to evaluate postoperative outcomes, and incidence of recurrent target ischemia in vessels with prior PCI in patients who had PCI prior to CABG compared to only CABG patients. METHODS: A review included CABG patients operated from 2000 to 2012. PCI prior to CABG patients were compared with patients having had CABG on native coronary arteries. Demographic and risk factors, including hospital morbidity, mortality, and recurrent target vessel ischemia at follow-up (FU), were compared. Major end-points were statistical differences of postoperative morbidity and reintervention rates due to symptomatic graft failure or target vessel ischemia during FU. RESULTS: Twenty-four percent of 1669 isolated CABG patients had PCI prior to CABG, with an increasing percentage during recent years. Demographics, risk factors, comorbidities and mortality rates were similar. Incidence of postoperative hemorrhage (OR 1.9; 95% CI 1.1-3.2; p = 0.02), perioperative myocardial infarction rate (p = 0.02), neurological deficits (OR 3.5; 95% CI 1.2-9.7; p = 0.02) and re-intervention rate for symptomatic graft or target vessel occlusion were higher in pretreated patients (OR 1.8; 95% CI 1.1-3.0; p = 0.01). CONCLUSIONS: PCI prior to CABG increases the risk for postoperative morbidity. Increased postoperative hemorrhage could be attributed to ongoing double anti-platelet therapy. doi: 10.1111/jocs.12514 (J Card Surg 2015;30:313-318).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIM: Heart disease is recognized as a consequence of dysregulation of cardiac gene regulatory networks. Previously, unappreciated components of such networks are the long non-coding RNAs (lncRNAs). Their roles in the heart remain to be elucidated. Thus, this study aimed to systematically characterize the cardiac long non-coding transcriptome post-myocardial infarction and to elucidate their potential roles in cardiac homoeostasis. METHODS AND RESULTS: We annotated the mouse transcriptome after myocardial infarction via RNA sequencing and ab initio transcript reconstruction, and integrated genome-wide approaches to associate specific lncRNAs with developmental processes and physiological parameters. Expression of specific lncRNAs strongly correlated with defined parameters of cardiac dimensions and function. Using chromatin maps to infer lncRNA function, we identified many with potential roles in cardiogenesis and pathological remodelling. The vast majority was associated with active cardiac-specific enhancers. Importantly, oligonucleotide-mediated knockdown implicated novel lncRNAs in controlling expression of key regulatory proteins involved in cardiogenesis. Finally, we identified hundreds of human orthologues and demonstrate that particular candidates were differentially modulated in human heart disease. CONCLUSION: These findings reveal hundreds of novel heart-specific lncRNAs with unique regulatory and functional characteristics relevant to maladaptive remodelling, cardiac function and possibly cardiac regeneration. This new class of molecules represents potential therapeutic targets for cardiac disease. Furthermore, their exquisite correlation with cardiac physiology renders them attractive candidate biomarkers to be used in the clinic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To implement and characterize an isotropic three-dimensional cardiac T2 mapping technique. METHODS: A self-navigated three-dimensional radial segmented balanced steady-state free precession pulse sequence with an isotropic 1.7-mm spatial resolution was implemented at 3T with a variable T2 preparation module. Bloch equation and Monte Carlo simulations were performed to determine the influence of the heart rate, B1 inhomogeneity and noise on the T2 fitting accuracy. In a phantom study, the accuracy of the pulse sequence was studied through comparison with a gold-standard spin-echo T2 mapping method. The robustness and homogeneity of the technique were ascertained in a study of 10 healthy adult human volunteers, while first results obtained in patients are reported. RESULTS: The numerical simulations demonstrated that the heart rate and B1 inhomogeneity cause only minor deviations in the T2 fitting, whereas the phantom study showed good agreement of the technique with the gold standard. The volunteer study demonstrated an average myocardial T2 of 40.5 ± 3.3 ms and a <15% T2 gradient in the base-apex and anterior-inferior direction. In three patients, elevated T2 values were measured in regions with expected edema. CONCLUSION: This respiratory self-navigated isotropic three-dimensional technique allows for accurate and robust in vitro and in vivo T2 quantification. Magn Reson Med 73:1549-1554, 2015. © 2014 Wiley Periodicals, Inc.