997 resultados para Carbo-amino-phospho-chelate calcium
Resumo:
Natriuretic peptides are common components of reptile venoms and molecular cloning of their biosynthetic precursors has revealed that in snakes, they co-encode bradykinin-potentiating peptides and in venomous lizards, some co-encode bradykinin inhibitory peptides such as the helokinestatins. The common natriuretic peptide/helokinestatin precursor of the Gila Monster, Heloderma suspectum, encodes five helokinestatins of differing primary structures. Here we report the molecular cloning of a natriuretic peptide/helokinestatin precursor cDNA from a venom-derived cDNA library of the Mexican beaded lizard (Heloderma horridum). Deduction of the primary structure of the encoded precursor protein from this cloned cDNA template revealed that it consisted of 196 amino acid residues encoding a single natriuretic peptide and five helokinestatins. While the natriuretic peptide was of identical primary structure to its Gila Monster (H. suspectum) homolog, the encoded helokinestatins were not, with this region of the common precursor displaying some significant differences to its H. suspectum homolog. The helokinestatin-encoding region contained a single copy of helokinestatin-1, 2 copies of helokinestatin-3 and single copies of 2 novel peptides, (Phe)(5)-helokinestatin-2 (VPPAFVPLVPR) and helokinestatin-6 (GPPFNPPPFVDYEPR). All predicted peptides were found in reverse phase HPLC fractions of the same venom. Synthetic replicates of both novel helokinestatins were found to antagonize the relaxing effect of bradykinin on rat tail artery smooth muscle. Thus lizard venom continues to provide a source of novel biologically active peptides. (C) 2011 Published by Elsevier Inc.
Resumo:
The new complexes [Pt(dppp)(py)(2)][OTf](2), 1, [Pt(dppp)(2-ap)(2)][OTf](2), 2, [(dppp)Pt(mu -OH){mu -NH(C5H3N)NH2}Pt(dppp)][OTf](2), 3 (py=pyridine, 2-ap=2-aminopyridine, NH(C5H3N)NH2=2,6-diaminopyridine anion, dppp = 1,3-bis(diphenylphosphino)propane, OTf=O3SCF3) have been prepared via reactions between [Pt(dppp)(OTf)(2)] and pyridine, 2-aminopyridine or 2,6-diaminopyridine (2,6-dap) respectively. The amines exhibit a range of co-ordination modes. Pyridine and 2-aminopyridine co-ordinate to platinum through endo-nitrogen atoms in complexes 1 and 2, the latter existing as a pair of rotomers due to the steric hindrance introduced by the 2-substituent. However, 2,6-diaminopyridine co-ordinates to platinum through the exo-nitrogen of one amino group, to give the unusual mu -amido complex 3. Reaction of the known orotate chelate complex [Pt(PEt3)(2)(N,O-HL)] [HL=orotate, the dianion of 2,6-dioxo-1,2,3,6-tetrahydropyrimidine-4-carboxylic acid (orotic acid)] with 2,6-dap gave [Pt(PEt3)(2)(2,6-dap)(N-HL)] 4, which contains an unconventional monodentate orotate ligand. In this co-ordination mode the orotate retains an ADA hydrogen bonding site and was found to co-crystallise with 2,6-dap via complementary ADA:DAD triple hydrogen bonds to give [Pt(PEt3)(2)(N-HL)(2,6-dap)].2,6-dap, 5. Complex 5 exhibits a helical chain structure of associated [1+1] adducts in the solid state.
Resumo:
An iron prophyrin complex has been immobilized on the surfaces of platinum, silver, and indium doped-tin oxide coated glass by using the poly(gamma-ethyl L-glutamate)-N-(3-aminopropyl)imidazole derivative 1 as a linking agent, thus allowing-the surface-enhanced resonance Raman and UV-VIS absorption spectra and electrochemical properties of the porphyrin to be studied in solvents in which it is not normally soluble.
Resumo:
Galactokinase catalyses the site-and stereospecific phosphorylation of galactose at the expense of ATP. The specificity of bacterial galactokinase enzymes can be broadened by alteration of a tyrosine residue to a histidine. The effects of altering the equivalent residue in human galactokinase (Tyr379) were investigated by testing all 19 possible variants. All of these alterations, except Y379P, resulted in soluble protein on expression in Escherichia coli and all the soluble variants could catalyse the phosphorylation of galactose, except Y379A and Y379E. The variants Y379C, Y379K, Y379R, Y379S and Y379W were all able to catalyse the phosphorylation of a variety of monosaccharides, including ones that are not acted on by the wild-type enzyme. Novel substrates for these variant galactokinases included D-mannose and D-fructose. The latter monosaccharide is presumed to react in the pyranose configuration. Molecular modelling suggested that the alterations do not cause changes to the overall structure of the enzyme. However, alteration of Tyr379 increases the flexibility of the peptide backbone in regions surrounding the active site. Therefore, it is proposed that alteration of Tyr379 affects the substrate specificity by the propagation of changes in flexibility to the active site, permitting a broader range of compounds to be accommodated.
Resumo:
Racemic (1R*,2R*)-1,2-dihydroxy-[1- 13C 1]propylphosphonic acid and 1-hydroxy-[1- 13C 1]acetone were synthesized and fed to R. huakuii PMY1. Alanine and a mixture of valine and methionine were isolated as their N-acetyl derivatives from the cell hydrolysate by reversed-phase HPLC and analyzed by NMR spectroscopy. It was found that the carbon atoms of the respective carboxyl groups were highly 13C-labeled (up to 65 %). Hydroxyacetone is therefore considered an obligatory intermediate of the biodegradation of fosfomycin by R. huakuii PMY1.
Resumo:
Furazolidone, a nitrofuran antibiotic, is banned from use in food animal production within the European Union. Increasingly, compliance with this ban is monitored by use of analytical methods to detect a stable tissue-bound metabolite, 3-amino-2-oxazolidinone (AOZ). Widespread use of furazolidone in poultry and prawns imported into Europe highlighted the urgent need for development of nitrofuran immunoassay screening tests. The first enzyme-linked immunoabsorbant assay for detection of AOZ residues in prawns (shrimps) is now described. Prawn samples were derivatized with o-nitrobenzaldehyde, extracted into ethyl acetate, washed with hexane and applied to a competitive enzyme immunoassay based on a rabbit polyclonal antiserum. Assay limit of detection (LOD) (mean+3 s) calculated from the analysis of 20 known negative cold and warm water prawn samples was 0.1 mug kg(-1). Intra- and interassay relative standard deviations were determined as 18.8 and 38.2%, respectively, using a negative prawn fortified at 0.7 mug kg(-1). The detection capability (CCbeta), defined as the concentration of AOZ at which 20 different fortified samples yielded results above the LOD, was achieved at fortification between 0.4 and 0.7 mug kg(-1). Incurred prawn samples (n=8) confirmed by liquid chromatography coupled with tandem mass spectrometry detection to contain AOZ concentrations between 0.4 and 12.7 mug kg(-1) were all screened positive by this enzyme-linked immunoabsorbant assay. Further data are presented and discussed with regard to calculating assay LOD based on accepting a 5% false-positive rate with representative negative prawn samples. Such an acceptance improves the sensitivity of an ELISA and in this case permitted an LOD of 0.05 mug kg(-1) and a CCbeta of below 0.4 mug kg(-1).
Resumo:
Phenotypic studies of mice lacking metabotropic glutamate receptor subtype 7 (mGluR7) suggest that antagonists of this receptor may be promising for the treatment of central nervous system disorders such as anxiety and depression. Suzuki et al. (J Pharmacol Exp Ther 323: 147-156, 2007) recently reported the in vitro characterization of a novel mGluR7 antagonist called 6-(4-methoxyphenyl)-5-methyl-3-(4-pyridinyl)-isoxazolo[4,5-c]pyridin-4(5H)-one (MMPIP), which noncompetitively inhibited the activity of orthosteric and allosteric agonists at mGluR7. We describe that MMPIP acts as a noncompetitive antagonist in calcium mobilization assays in cells coexpressing mGluR7 and the promiscuous G protein G alpha(15). Assessment of the activity of a small library of MMPIP-derived compounds using this assay reveals that, despite similar potencies, compounds exhibit differences in negative co-operativity for agonist-mediated calcium mobilization. Examination of the inhibitory activity of MMPIP and analogs using endogenous G(i/o)-coupled assay readouts indicates that the pharmacology of these ligands seems to be context-dependent, and MMPIP exhibits differences in negative cooperativity in certain cellular backgrounds. Electrophysiological studies reveal that, in contrast to the orthosteric antagonist (2S)-2-amino-2-[(1S,2S)-2-carboxyclycloprop-1-yl]-3-(xanth-9-yl) propanoic acid (LY341495), MMPIP is unable to block agonist-mediated responses at the Schaffer collateral-CA1 synapse, a location at which neurotransmission has been shown to be modulated by mGluR7 activity. Thus, MMPIP and related compounds differentially inhibit coupling of mGluR7 in different cellular backgrounds and may not antagonize the coupling of this receptor to native G(i/o) signaling pathways in all cellular contexts. The pharmacology of this compound represents a striking example of the potential for context-dependent blockade of receptor responses by negative allosteric modulators.