926 resultados para Capacitor voltage equalization


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mestrado em Radiações Aplicadas às Tecnologias da Saúde - Ramo de especialização: Imagem Digital com Radiação X

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A existência do regime de neutro em subestações de distribuição de energia elétrica é essencial para o bom funcionamento de toda a rede. Existe um vasto leque de opções no que diz respeito aos regimes de neutro. Cada opção tem as suas vantagens e desvantagens, e cabe às empresas do setor elétrico a escolha do regime de neutro mais adequado em função das caraterísticas da rede. A escolha do regime de neutro tem influência direta no desempenho global de toda a rede de média tensão. O principal objetivo desta dissertação é o estudo e a análise das vantagens e inconvenientes dos vários regimes de neutro: neutro isolado, neutro impedante, ligado diretamente à terra, neutro ressonante, analisando as suas vantagens e inconvenientes. É feito um estudo aprofundado do regime de neutro ressonante, também designado por regime de neutro com a Bobine de Petersen. Este trabalho descreve, ainda, de forma sucinta a situação de Portugal relativamente aos regimes de neutro que utiliza e a sua perspetiva futura. Por fim é apresentado um caso de estudo, que diz respeito a uma rede de média tensão (30 kV) alimentada pela subestação de Serpa. Foram estudados os regimes de neutro como a bobine de Petersen, reatância de neutro e neutro isolado. Foi também estudada a influência na ocorrência de um defeito fase-terra e a influência na ocorrência de defeitos francos e resistivos em vários pontos da rede.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the results of a study of the sulphurization time effects on Cu2ZnSnS4 absorbers and thin film solar cells prepared from dc-sputtered tackedmetallic precursors. Three different time intervals, 10 min, 30min and 60 min, at maximum sulphurization temperature were considered. The effects of this parameter' change were studied both on the absorber layer properties and on the final solar cell performance. The composition, structure, morphology and thicknesses of the CZTS layers were analyzed. The electrical characterization of the absorber layer was carried out by measuring the transversal electrical resistance of the samples as a function of temperature. This study shows an increase of the conductivity activation energy from 10 meV to 54meV for increasing sulphurization time from 10min to 60min. The solar cells were built with the following structure: SLG/Mo/CZTS/CdS/i-ZnO/ZnO:Al/Ni:Al grid. Several ac response equivalent circuit models were tested to fit impedance measurements. The best results were used to extract the device series and shunt resistances and capacitances. Absorber layer's electronic properties were also determined using the Mott–Schottky method. The results show a decrease of the average acceptor doping density and built-in voltage, from 2.0 1017 cm−3 to 6.5 1015 cm−3 and from 0.71 V to 0.51 V, respectively, with increasing sulphurization time. These results also show an increase of the depletion region width from approximately 90 nm–250 nm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this report, we propose an AC response equivalent circuit model to describe the admittance measurements of Cu2ZnSnS4 thin film solar cell grown by sulphurization of stacked metallic precursors. This circuit describes the contact resistances, the back contact, and the heterojunction with two trap levels. The study of the back contact resistance allowed the estimation of a back contact barrier of 246 meV. The analysis of the trap series with varying temperature revealed defect activation energies of 45 meV and 113 meV. The solar cell’s electrical parameters were obtained from the J-V curve: conversion efficiency, 1.21%; fill factor, 50%; open circuit voltage, 360 mV; and short circuit current density, 6.8 mA/cm2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present work we report the details of the preparation and characterization results of Cu2ZnSnS4 (CZTS) based solar cells. The CZTS absorber was obtained by sulphurization of dc magnetron sputtered Zn/Sn/Cu precursor layers. The morphology, composition and structure of the absorber layer were studied by scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction and Raman scattering. The majority carrier type was identified via a hot point probe analysis. The hole density, space charge region width and band gap energy were estimated from the external quantum efficiency measurements. A MoS2 layer that formed during the sulphurization process was also identified and analyzed in this work. The solar cells had the following structure: soda lime glass/Mo/CZTS/CdS/i-ZnO/ZnO:Al/Al grid. The best solar cell showed an opencircuit voltage of 345 mV, a short-circuit current density of 4.42 mA/cm2, a fill factor of 44.29% and an efficiency of 0.68% under illumination in simulated standard test conditions: AM 1.5 and 100 mW/cm2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Energia

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a programable perturbation and observation control implementation for a wind generation system and its power electronic converter. The objective of the method in this particular application is to adjust the power delivered to charge a battery to its maximum and allowable value, function of the real values of several parameters and their continuous variation, the most important the wind velocity and the turbine efficiency. Also, to improve the power throughput and to use the turbine and generator marginal zones of operation, an unusual power converter is used, allowing a wide range for the input voltage values. The implemented control is continuously measuring the actual power and looks for a new and powerful operation point. © 2014 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fast Field Cycling (FFC) Nuclear Magnetic Resonance (NMR) relaxometers require controlled current sources in order to get accurate flux density with respect to its magnet. The main elements of the proposed solution are a power semiconductor, a DC voltage source and the magnet. The power semiconductor is commanded in order to get a linear control of the flux density. To implement the flux density control, a Hall Effect sensor is used. Furthermore, the dynamic behavior of the current source is analyzed and compared when using a PI controller and a PD2I controller.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new integrated mathematical model for the simulation of offshore wind energy conversion system performance is presented in this paper. The mathematical model considers an offshore variable-speed turbine in deep water equipped with a permanent magnet synchronous generator using full-power two-level converter, converting the energy of a variable frequency source in injected energy into the electric network with constant frequency, through a high voltage DC transmission submarine cable. The mathematical model for the drive train is a concentrate two mass model which incorporates the dynamic for the structure and tower due to the need to emulate the effects of the moving surface. Controller strategy considered is a proportional integral one. Also, pulse width modulation using space vector modulation supplemented with sliding mode is used for trigger the transistor of the converter. Finally, a case study is presented to access the system performance. © 2014 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With progressing CMOS technology miniaturization, the leakage power consumption starts to dominate the dynamic power consumption. The recent technology trends have equipped the modern embedded processors with the several sleep states and reduced their overhead (energy/time) of the sleep transition. The dynamic voltage frequency scaling (DVFS) potential to save energy is diminishing due to efficient (low overhead) sleep states and increased static (leakage) power consumption. The state-of-the-art research on static power reduction at system level is based on assumptions that cannot easily be integrated into practical systems. We propose a novel enhanced race-to-halt approach (ERTH) to reduce the overall system energy consumption. The exhaustive simulations demonstrate the effectiveness of our approach showing an improvement of up to 8 % over an existing work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Shape Memory Alloy (SMA) Ni-Ti films have attracted much interest as functional and smart materials due to their unique properties. However, there are still important issues unresolved like formation of film texture and its control as well as substrate effects. Thus, the main challenge is not only the control of the microstructure, including stoichiometry and precipitates, but also the identification and control of the preferential orientation since it is a crucial factor in determining the shape memory behaviour. The aim of this PhD thesis is to study the optimisation of the deposition conditions of films of Ni-Ti in order to obtain the material fully crystallized at the end of the deposition, and to establish a clear relationship between the substrates and texture development. In order to achieve this objective, a two-magnetron sputter deposition chamber has been used allowing to heat and to apply a bias voltage to the substrate. It can be mounted into the six-circle diffractometer of the Rossendorf Beamline (ROBL) at the European Synchrotron Radiation Facility (ESRF), Grenoble, France, enabling an in-situ characterization by X-ray diffraction(XRD) of the films during their growth and annealing. The in-situ studies enable us to identify the different steps of the structural evolution during deposition with a set of parameters as well as to evaluate the effect of changing parameters on the structural characteristics of the deposited film. Besides the in-situ studies, other complementary ex-situ characterization techniques such as XRD at a laboratory source, Rutherford backscattering spectroscopy(RBS), Auger electron spectroscopy (AES), cross-sectional transmission electron microscopy (X-TEM), scanning electron microscopy (SEM), and electrical resistivity (ER) measurements during temperature cycling have been used for a fine structural characterization. In this study, mainly naturally and thermally oxidized Si(100) substrates, TiN buffer layers with different thicknesses (i.e. the TiN topmost layer crystallographic orientation is thickness dependent) and MgO(100) single crystals were used as substrates. The chosen experimental procedure led to a controlled composition and preferential orientation of the films. The type of substrate plays an important role for the texture of the sputtered Ni-Ti films and according to the ER results, the distinct crystallographic orientations of the Ni-Ti films influence their phase transformation characteristics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Radio frequency (RF) energy harvesting is an emerging technology that will enable to drive the next generation of wireless sensor networks (WSNs) without the need of using batteries. In this paper, we present RF energy harvesting circuits specifically developed for GSM bands (900/1800) and a wearable dual-band antenna suitable for possible implementation within clothes for body worn applications. Besides, we address the development and experimental characterization of three different prototypes of a five-stage Dickson voltage multiplier (with match impedance circuit) responsible for harvesting the RF energy. Different printed circuit board (PCB) fabrication techniques to produce the prototypes result in different values of conversion efficiency. Therefore, we conclude that if the PCB fabrication is achieved by means of a rigorous control in the photo-positive method and chemical bath procedure applied to the PCB it allows for attaining better values for the conversion efficiency. All three prototypes (1, 2 and 3) can power supply the IRIS sensor node for RF received powers of -4 dBm, -6 dBm and -5 dBm, and conversion efficiencies of 20, 32 and 26%, respectively. © 2014 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a programable perturbation and observation control implementation for a wind generation system and its power electronic converter. The objective of the method in this particular application is to adjust the power delivered to charge a battery to its maximum and allowable value, function of the real values of several parameters and their continuous variation, the most important the wind velocity and the turbine efficiency. Also, to improve the power throughput and to use the turbine and generator marginal zones of operation, an unusual power converter is used, allowing a wide range for the input voltage values. The implemented control is continuously measuring the actual power and looks for a new and powerful operation point. © 2014 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fast Field Cycling (FFC) Nuclear Magnetic Resonance (NMR) relaxometers require controlled current sources in order to get accurate flux density with respect to its magnet. The main elements of the proposed solution are a power semiconductor, a DC voltage source and the magnet. The power semiconductor is commanded in order to get a linear control of the flux density. To implement the flux density control, a Hall Effect sensor is used. Furthermore, the dynamic behavior of the current source is analyzed and compared when using a PI controller and a PD2I controller.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents solutions for fault detection and diagnosis of two-level, three phase voltage-source inverter (VSI) topologies with IGBT devices. The proposed solutions combine redundant standby VSI structures and contactors (or relays) to improve the fault-tolerant capabilities of power electronics in applications with safety requirements. The suitable combination of these elements gives the inverter the ability to maintain energy processing in the occurrence of several failure modes, including short-circuit in IGBT devices, thus extending its reliability and availability. A survey of previously developed fault-tolerant VSI structures and several aspects of failure modes, detection and isolation mechanisms within VSI is first discussed. Hardware solutions for the protection of power semiconductors with fault detection and diagnosis mechanisms are then proposed to provide conditions to isolate and replace damaged power devices (or branches) in real time. Experimental results from a prototype are included to validate the proposed solutions.