873 resultados para COMMUTATIVE AUTOMORPHIC LOOP
Resumo:
This paper presents a disturbance attenuation controller for horizontal position stabilization for hover and automatic landings of a Rotary-wing Unmanned Aerial Vehicle (RUAV) operating in rough seas. Based on a helicopter model representing aerodynamics during the landing phase, a nonlinear state feedback H-infinity controller is designed to achieve rapid horizontal position tracking in a gusty environment. The resultant control variables are further treated in consideration of practical constraints (flapping dynamics, servo dynamics and time lag effect) for implementation purpose. The high-fidelity closed-loop simulation using parameters of the Vario helicopter verifies performance of the proposed position controller. It not only increases the disturbance attenuation capability of the RUAV, but also enables rapid position response when gusts occur. Comparative studies show that the H-infinity controller exhibits great performance improvement and can be applied to ship/RUAV landing systems.
Resumo:
This study presents a disturbance attenuation controller for horizontal position stabilisation for hover and automatic landings of a rotary-wing unmanned aerial vehicle (RUAV) operating close to the landing deck in rough seas. Based on a helicopter model representing aerodynamics during the landing phase, a non-linear state feedback H∞ controller is designed to achieve rapid horizontal position tracking in a gusty environment. Practical constraints including flapping dynamics, servo dynamics and time lag effect are considered. A high-fidelity closed-loop simulation using parameters of the Vario XLC gas-turbine helicopter verifies performance of the proposed horizontal position controller. The proposed controller not only increases the disturbance attenuation capability of the RUAV, but also enables rapid position response when gusts occur. Comparative studies show that the H∞ controller exhibits performance improvement and can be applied to ship/RUAV landing systems.
Resumo:
The Macroscopic Fundamental Diagram (MFD) relates space-mean density and flow, and the existence with dynamic features was confirmed in congested urban network with real data set from loop detectors and taxi probes. Since the MFD represents the area-wide network traffic performances, it gives foundations for perimeter control strategies and an area traffic state estimation enabling area-based network control. However, limited works have been reported on real world example from signalised arterial network. This paper fuses data from multiple sources (Bluetooth, Loops and Signals) and develops a framework for the development of the MFD for Brisbane. Existence of the MFD in Brisbane network is confirmed. Different MFDs (from whole network and several sub regions) are evaluated to discover the spatial partitioning in network performance representation.
Resumo:
This video article articulates two exercises that have been developed to respond to the need for preparedness in the growing field of Performance Capture. The first is called Walking Through (Delbridge 2013), where the actor navigates a series of objects that exist in screen space through a developed sense of the existing physical particularities of the studio and an interaction with a screen (or feedback loop). The second exercise is called The Donut (Delbridge 2013), where the performer continues to navigate screen space but this time does so through the literal stepping through of a Torus in the virtual – again with nothing but the studio infrastructure and the screen as a guide. Notions of Motion Captured performance infer the existence of an interface that combines performer with system, separating (or intervening in) the space between performance and the screen. It is precisely the effect and provided opportunity of the intermediary device on the practice, craft and preparedness of the actor as they navigate the connection between 3D screen space and the physical properties of the studio that is examined here. Defining the scope of current practice for the contemporary actor is a key construct of this challenge, with the most appropriate definition revolving around the provision of a required mixture of performance and content for live, mediated, framed and variously captured formats. One of these particular formats is Performance Capture. The exercises presented here are two from a series, developed over a three year study that contribute to our understanding of the potential for a training regimen to be developed for the rigors of Performance Capture.
Resumo:
Loneliness is a distressing, complex, universal phenomena. This review focuses on loneliness in children and adolescents, specifically examining research on the relationship between young people’s social anxiety and loneliness and the role of bullying victimization and loneliness. The three concepts are distinct, yet inextricably intertwined as antecedents and consequences of each other. The constructs are bi-directional, often forming a feedback loop or negative cycle. Implications for interventions are addressed.
Resumo:
For dynamic closed loop control of a multilevel converter with a low switching frequency, natural sampled PWM is the best form of modulation. However previous natural sampled PWM implementations have generally been analog. A digital implementation has advantages, particularly for a multilevel converter. Re-sampled uniform PWM, a modulation technique which approaches the performance of natural PWM, is implemented both in software and hardware. Results demonstrating the improvement over uniformPWM techniques are presented.
Resumo:
Rotary ventricular assist device (VAD) support of the cardiovascular system is susceptible to suction events due to the limited preload sensitivity of these devices. This may be of particular concern with rotary biventricular support (BiVAD) where the native, flow-balancing Starling response is diminished in both ventricles. The reliability of sensor and sensor-less based control systems which aim to control VAD flow based on preload have limitations and thus an alternative solution is desired. This study introduces a compliant inflow cannula (CIC) which could improve the preload sensitivity of a rotary VAD by passively altering VAD flow depending on preload. To evaluate the design, both the CIC and a standard rigid inflow cannula were inserted into a mock circulation loop to enable biventricular heart failure support using configurations of atrial and ventricular inflow, and arterial outflow cannulation. A range of left (LVAD) and right VAD (RVAD) rotational speeds were tested as well as step changes in systemic/pulmonary vascular resistance to alter relative preloads, with resulting flow rates recorded. Simulated suction events were observed, particularly at higher VAD speeds, during support with the rigid inflow cannula, while the CIC prevented suction events under all circumstances. The compliant section passively restricted its internal diameter as preload was reduced, which increased the VAD circuit resistance and thus reduced VAD flow. Therefore, a compliant inflow cannula could potentially be used as a passive control system to prevent suction events in rotary left, right and biventricular support.
Resumo:
Right heart dysfunction is one of the most serious complications following implantation of a left ventricular assist device (LVAD), often leading to the requirement for short or long term right ventricular support (RVAD). The inflow cannulation site induces major haemodynamic changes and so there is a need to optimize the site used depending on the patient's condition. Therefore, this study evaluated and compared the haemodynamic influence of right atrial (RAC) and right ventricular (RVC) inflow cannulation sites. An in-vitro, variable heart failure, mock circulation loop was used to compare RAC and RVC in mild and severe biventricular heart failure (BHF) conditions. In the severe BHF condition, higher ventricular ejection fraction (RAC: 13.6%, RVC: 32.7%) and thus improved heart chamber and RVAD washout was observed with RVC, which suggested this strategy might be preferable for long term support (ie. bridge to transplant or destination therapy) to reduce the risk of thrombus formation. In the mild BHF condition, higher pulmonary valve flow (RAC: 3.33 L/min, RVC: 1.97 L/min) and lower right ventricular stroke work (RAC: 0.10 W, RVC: 0.13 W) and volumes were recorded with RAC. These results indicate an improved potential for myocardial recovery, thus RAC should be chosen in this condition. This in-vitro study suggests that RVAD inflow cannulation site should be chosen on a patient-specific basis with a view to the support strategy to promote myocardial recovery or reduce the risk of long-term complications.
Resumo:
The paper introduces the design of robust current and voltage control algorithms for a grid-connected three-phase inverter which is interfaced to the grid through a high-bandwidth three-phase LCL filter. The algorithms are based on the state feedback control which have been designed in a systematic approach and improved by using oversampling to deal with the issues arising due to the high-bandwidth filter. An adaptive loop delay compensation method has also been adopted to minimize the adverse effects of loop delay in digital controller and to increase the robustness of the control algorithm in the presence of parameter variations. Simulation results are presented to validate the effectiveness of the proposed algorithm.
Resumo:
Collecting regular personal reflections from first year teachers in rural and remote schools is challenging as they are busily absorbed in their practice, and separated from each other and the researchers by thousands of kilometres. In response, an innovative web-based solution was designed to both collect data and be a responsive support system for early career teachers as they came to terms with their new professional identities within rural and remote school settings. Using an emailed link to a web-based application named goingok.com, the participants are charting their first year plotlines using a sliding scale from ‘distressed’, ‘ok’ to ‘soaring’ and describing their self-assessment in short descriptive posts. These reflections are visible to the participants as a developing online journal, while the collections of de-identified developing plotlines are visible to the research team, alongside numerical data. This paper explores important aspects of the design process, together with the challenges and opportunities encountered in its implementation. A number of the key considerations for choosing to develop a web application for data collection are initially identified, and the resultant application features and scope are then examined. Examples are then provided about how a responsive software development approach can be part of a supportive feedback loop for participants while being an effective data collection process. Opportunities for further development are also suggested with projected implications for future research.
Resumo:
This project investigated ways in which the learning experience for students in Australian law schools could be enhanced by renewing final year legal curriculum through the design of effective capstone experiences to close the loop on tertiary legal studies and better prepare students for a smooth transition into the world of work and professional practice. Key project outcomes are a set of final year curriculum design principles and a transferable model for an effective final year program – a final year Toolkit comprising a range of templates, models and specific capstone examples for adoption or adaptation by legal educators. The project found that the efficacy of capstone experiences is affected by the curriculum context within which they are offered. For this reason, a number of ‘favourable conditions’, which promote the effectiveness of capstone experiences, have also been identified. The project’s final year principles and Toolkit promote program coherence and integration, should increase student satisfaction and levels of engagement with their experience of legal education and make a valuable contribution to assurance of learning in the new Tertiary Education Quality and Standards Agency (TEQSA) environment. From the point of view of the student experience, the final year principles and models address the current fragmented approach to final year legal curricula design and delivery. The knowledge and research base acquired under the auspices of this project is of both discipline and national importance as the project’s outcomes are transferable and have the potential to significantly influence the quality and coherence of the program experience of final year students in other tertiary disciplines, both within Australia and beyond. Project outcomes and deliverables are available on both the project’s website http://wiki.qut.edu.au/display/capstone/Home and on the Law Capstone Experience Forum website http://www.lawcapstoneexperience.com/. In the course of developing its deliverables, the project found that the design of capstone experiences varies significantly within and across disciplines; different frameworks may be used (for example, a disciplinary or inter-disciplinary focus, or to satisfy professional accreditation requirements), rationales and objectives may differ, and a variety of models utilised (for example, an integrated final year program, a single subject, a suite of subjects, or modules within several subjects). Broadly however, capstone experiences should provide final year students with an opportunity both to look back over their academic learning, in an effort to make sense of what they have accomplished, and to look forward to their professional and personal futures that build on that foundational learning.
Resumo:
The IEC 61850 family of standards for substation communication systems were released in the early 2000s, and include IEC 61850-8-1 and IEC 61850-9-2 that enable Ethernet to be used for process-level connections between transmission substation switchyards and control rooms. This paper presents an investigation of process bus protection performance, as the in-service behavior of multi-function process buses is largely unknown. An experimental approach was adopted that used a Real Time Digital Simulator and 'live' substation automation devices. The effect of sampling synchronization error and network traffic on transformer differential protection performance was assessed and compared to conventional hard-wired connections. Ethernet was used for all sampled value measurements, circuit breaker tripping, transformer tap-changer position reports and Precision Time Protocol synchronization of sampled value merging unit sampling. Test results showed that the protection relay under investigation operated correctly with process bus network traffic approaching 100% capacity. The protection system was not adversely affected by synchronizing errors significantly larger than the standards permit, suggesting these requirements may be overly conservative. This 'closed loop' approach, using substation automation hardware, validated the operation of protection relays under extreme conditions. Digital connections using a single shared Ethernet network outperformed conventional hard-wired solutions.
Resumo:
My practice-led research explores and maps workflows for generating experimental creative work involving inertia based motion capture technology. Motion capture has often been used as a way to bridge animation and dance resulting in abstracted visuals outcomes. In early works this process was largely done by rotoscoping, reference footage and mechanical forms of motion capture. With the evolution of technology, optical and inertial forms of motion capture are now more accessible and able to accurately capture a larger range of complex movements. Made by Motion is a collaboration between digital artist Paul Van Opdenbosch and performer and choreographer Elise May; a series of studies on captured motion data used to generate experimental visual forms that reverberate in space and time. The project investigates the invisible forces generated by and influencing the movement of a dancer. Along with how the forces can be captured and applied to generating visual outcomes that surpass simple data visualisation, projecting the intent of the performer’s movements. The source or ‘seed’ comes from using an Xsens MVN – Inertial Motion Capture system to capture spontaneous dance movements, with the visual generation conducted through a customised dynamics simulation. In my presentation I will be displaying and discussing a selected creative works from the project along with the process and considerations behind the work.
Resumo:
Diesel particulate matter (DPM), in particular, has been likened in a somewhat inflammatory manner to be the ‘next asbestos’. From the business change perspective, there are three areas holding the industry back from fully engaging with the issue: 1. There is no real feedback loop in any operational sense to assess the impact of investment or application of controls to manage diesel emissions. 2. DPM are getting ever smaller and more numerous, but there is no practical way of measuring them to regulate them in the field. Mass, the current basis of regulation, is becoming less and less relevant. 3. Diesel emissions management is generally wholly viewed as a cost, yet there are significant areas of benefit available from good management. This paper discusses a feedback approach to address these three areas to move the industry forward. The six main areas of benefit from providing a feedback loop by continuously monitoring diesel emissions have been identified: 1. Condition-based maintenance. Emissions change instantaneously if engine condition changes. 2. Operator performance. An operator can use a lot more fuel for little incremental work output through poor technique or discipline. 3. Vehicle utilisation. Operating hours achieved and ratios of idling to under power affect the proportion of emissions produced with no economic value. 4. Fuel efficiency. This allows visibility into other contributing configuration and environmental factors for the vehicle. 5. Emission rates. This allows scope to directly address the required ratio of ventilation to diesel emissions. 6. Total carbon emissions - for NGER-type reporting requirements, calculating the emissions individually from each vehicle rather than just reporting on fuel delivered to a site.
Resumo:
Total Artificial Hearts are mechanical pumps which can be used to replace the failing natural heart. This novel study developed a means of controlling a new design of pump to reproduce physiological flow bringing closer the realisation of a practical artificial heart. Using a mathematical model of the device, an optimisation algorithm was used to determine the best configuration for the magnetic levitation system of the pump. The prototype device was constructed and tested in a mock circulation loop. A physiological controller was designed to replicate the Frank-Starling like balancing behaviour of the natural heart. The device and controller provided sufficient support for a human patient while also demonstrating good response to various physiological conditions and events. This novel work brings the design of a practical artificial heart closer to realisation.