923 resultados para CEREBRAL ENERGY-METABOLISM


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aimed to develop a practical method of estimating energy expenditure (EE) during tennis. Twenty-four elite female tennis players first completed a tennis-specific graded test in which five different intensity levels were applied randomly. Each intensity level was intended to simulate a game of singles tennis and comprised six 14 s periods of activity alternated with 20 s of active rest. Oxygen consumption (VO2) and heart rate (HR) were measured continuously and each player's rate of perceived exertion (RPE) was recorded at the end of each intensity level. Rate of energy expenditure (EEVO2) during the test was calculated using the sum of VO2 during play and the 'O-2 debt' during recovery, divided by the duration of the activity. There were significant individual linear relationships between EEVO2 and RPE, EEVO2 and HR, (rgreater than or equal to0.89 rgreater than or equal to0.93; p

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lipid homeostasis is controlled by the peroxisome proliferator-activated receptors (PPARalpha, -beta/delta, and -gamma) that function as fatty acid-dependent DNA-binding proteins that regulate lipid metabolism. In vitro and in vivo genetic and pharmacological studies have demonstrated PPARalpha regulates lipid catabolism. In contrast, PPARgamma regulates the conflicting process of lipid storage. However, relatively little is known about PPARbeta/delta in the context of target tissues, target genes, lipid homeostasis, and functional overlap with PPARalpha and -gamma. PPARbeta/delta, a very low-density lipoprotein sensor, is abundantly expressed in skeletal muscle, a major mass peripheral tissue that accounts for approximately 40% of total body weight. Skeletal muscle is a metabolically active tissue, and a primary site of glucose metabolism, fatty acid oxidation, and cholesterol efflux. Consequently, it has a significant role in insulin sensitivity, the blood-lipid profile, and lipid homeostasis. Surprisingly, the role of PPARbeta/delta in skeletal muscle has not been investigated. We utilize selective PPARalpha, -beta/delta, -gamma, and liver X receptor agonists in skeletal muscle cells to understand the functional role of PPARbeta/delta, and the complementary and/or contrasting roles of PPARs in this major mass peripheral tissue. Activation of PPARbeta/delta by GW501516 in skeletal muscle cells induces the expression of genes involved in preferential lipid utilization, beta-oxidation, cholesterol efflux, and energy uncoupling. Furthermore, we show that treatment of muscle cells with GW501516 increases apolipoprotein-A1 specific efflux of intracellular cholesterol, thus identifying this tissue as an important target of PPARbeta/delta agonists. Interestingly, fenofibrate induces genes involved in fructose uptake, and glycogen formation. In contrast, rosiglitazone-mediated activation of PPARgamma induces gene expression associated with glucose uptake, fatty acid synthesis, and lipid storage. Furthermore, we show that the PPAR-dependent reporter in the muscle carnitine palmitoyltransferase-1 promoter is directly regulated by PPARbeta/delta, and not PPARalpha in skeletal muscle cells in a PPARgamma coactivator-1-dependent manner. This study demonstrates that PPARs have distinct roles in skeletal muscle cells with respect to the regulation of lipid, carbohydrate, and energy homeostasis. Moreover, we surmise that PPARgamma/delta agonists would increase fatty acid catabolism, cholesterol efflux, and energy expenditure in muscle, and speculate selective activators of PPARbeta/delta may have therapeutic utility in the treatment of hyperlipidemia, atherosclerosis, and obesity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D degree in Biochemistry

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Genética Molecular e Biomedicina

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES: Discuss pathophysiological aspects of cerebral calcifications (CC) and highlight its importance related to the occurrence of neuropsychiatric syndromes. METHOD: Single case report. RESULT: Man 52 years old, 20 years after going through a total thyroidectomy, starts showing behavioral disturbance (psychotic syndrome). He was diagnosed as schizophrenic (paranoid subtype) and submitted to outpatient psychiatric treatment. During a psychiatric admission to evaluate his progressive cognitive and motor deterioration, we identified a dementia syndrome and extensive cerebral calcifications, derived from iatrogenic hypoparathyroidism. CONCLUSION: The calcium and phosphorus disturbances, including hypoparathyroidism, are common causes of CC. Its symptoms can imitate psychiatric disorders and produce serious and permanent cognitive sequelae. The exclusion of organicity is mandatory in any psychiatric investigative diagnosis in order to avoid unfavorable outcomes, such as in the present case report.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[Excerpt] Anaerobic microbial diversity encloses a very high potential that can be used for biotechnological applications. This potential is still largely unexplored, since the majority of the microorganisms in Nature are unknown or poorly characterized. This work is focused on the study of novel anaerobic microorganisms that participate in the metabolism of lipids, long chain fatty acids (LCFA) and glycerol, with the main goal of producing valuable energy-rich organic compounds. For that, conventional anaerobic culturing procedures were combined with continuous bioreactors operation and allied to microbial ecology approaches. Two main examples of the work performed will be presented. (...)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal of this study was to evaluate the effect of a high-carbohydrate diet (HC) and a high-protein diet (HP) on the metabolism of the crayfish Parastacus brasiliensis (Von Martens, 1869), collected in different seasons and maintained in the laboratory for 15 days. Crayfish were collected monthly from January 2002 to January 2004 at São Francisco de Paula, Southern Brazil, in Guarapirá stream. In the laboratory, the animals were kept submerged in aquariums under controlled conditions. They were fed ad libitum, for 15 days with either a HC or HP diet. At the end of this period, haemolymph samples were collected, as were hepatopancreas, gills, and abdominal muscle that were removed for determination of glycogen, free glucose, lipids, and triglycerides. The haemolymph samples were used for determination of glucose, proteins, lipids, and triglycerides. Statistical analysis (ANOVA) revealed significant seasonal differences in biochemical composition in crayfish maintained on HC or HP diets. Independent of the diets offered to the animals and the controlled conditions for 15 days, the indications of seasonality were unchanged. The observed changes seemed to be related to the reproductive period. Moreover, the HC diet increased all energy reserves in adult parastacids, which may aid in reproduction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Authors working on "industrial metabolism" or "social metabolism" look at the economy in terms of flows of energy and materials. Together with the ecological economists, they see the economy as a subsystem of a larger physical system. Marx and Engels followed with a few years’ delay many of the remarkable scientific and technical novelties of their time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an application of the Multiple-Scale Integrated Assessment of Societal Metabolism to the recent economic history of Ecuador and Spain. Understanding the relationship between the Gross Domestic Product (GDP) and the throughput of matter and energy over time in modern societies is crucial for understanding the sustainability predicament as it is linked to economic growth. When considering the dynamics of economic development, Spain was able to take a different path than Ecuador thanks to the different characteristics of its energy budget and other key variables. This and other changes are described using economic and biophysical variables (both extensive and intensive referring to different hierarchical levels). The representation of these parallel changes (on different levels and describable only using different variables) can be kept in coherence by adopting the frame provided by MSIASM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an outline of rationale and theory of the MuSIASEM scheme (Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism). First, three points of the rationale behind our MuSIASEM scheme are discussed: (i) endosomatic and exosomatic metabolism in relation to Georgescu-Roegen’s flow-fund scheme; (2) the bioeconomic analogy of hypercycle and dissipative parts in ecosystems; (3) the dramatic reallocation of human time and land use patterns in various sectors of modern economy. Next, a flow-fund representation of the MUSIASEM scheme on three levels (the whole national level, the paid work sectors level, and the agricultural sector level) is illustrated to look at the structure of the human economy in relation to two primary factors: (i) human time - a fund; and (ii) exosomatic energy - a flow. The three levels representation uses extensive and intensive variables simultaneously. Key conceptual tools of the MuSIASEM scheme - mosaic effects and impredicative loop analysis - are explained using the three level flow-fund representation. Finally, we claim that the MuSIASEM scheme can be seen as a multi-purpose grammar useful to deal with sustainability issues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The trabecular bone score (TBS, Med-Imaps, Pessac, France) is an index of bone microarchitecture texture extracted from anteroposterior dual-energy X-ray absorptiometry images of the spine. Previous studies have documented the ability of TBS of the spine to differentiate between women with and without fractures among age- and areal bone mineral density (aBMD)-matched controls, as well as to predict future fractures. In this cross-sectional analysis of data collected from 3 geographically dispersed facilities in the United States, we investigated age-related changes in the microarchitecture of lumbar vertebrae as assessed by TBS in a cohort of non-Hispanic US white American women. All subjects were 30 yr of age and older and had an L1-L4aBMDZ-score within ±2 SD of the population mean. Individuals were excluded if they had fractures, were on any osteoporosis treatment, or had any illness that would be expected to impact bone metabolism. All data were extracted from Prodigy dual-energy X-ray absorptiometry devices (GE-Lunar, Madison, WI). Cross-calibrations between the 3 participating centers were performed for TBS and aBMD. aBMD and TBS were evaluated for spine L1-L4 but also for all other possible vertebral combinations. To validate the cohort, a comparison between the aBMD normative data of our cohort and US non-Hispanic white Lunar data provided by the manufacturer was performed. A database of 619 non-Hispanic US white women, ages 30-90 yr, was created. aBMD normative data obtained from this cohort were not statistically different from the non-Hispanic US white Lunar normative data provided by the manufacturer (p = 0.30). This outcome thereby indirectly validates our cohort. TBS values at L1-L4 were weakly inversely correlated with body mass index (r = -0.17) and weight (r = -0.16) and not correlated with height. TBS values for all lumbar vertebral combinations decreased significantly with age. There was a linear decrease of 16.0% (-2.47 T-score) in TBS at L1-L4 between 45 and 90 yr of age (vs. -2.34 for aBMD). Microarchitectural loss rate increased after age 65 by 50% (-0.004 to -0.006). Similar results were obtained for other combinations of lumbar vertebra. TBS, an index of bone microarchitectural texture, decreases with advancing age in non-Hispanic US white women. Little change in TBS is observed between ages 30 and 45. Thereafter, a progressive decrease is observed with advancing age. The changes we observed in these American women are similar to that previously reported for a French population of white women (r(2) > 0.99). This reference database will facilitate the use of TBS to assess bone microarchitectural deterioration in clinical practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cerebral microangiopathy (CMA) has been associated with executive dysfunction and fronto-parietal neural network disruption. Advances in magnetic resonance imaging allow more detailed analyses of gray (e.g., voxel-based morphometry-VBM) and white matter (e.g., diffusion tensor imaging-DTI) than traditional visual rating scales. The current study investigated patients with early CMA and healthy control subjects with all three approaches. Neuropsychological assessment focused on executive functions, the cognitive domain most discussed in CMA. The DTI and age-related white matter changes rating scales revealed convergent results showing widespread white matter changes in early CMA. Correlations were found in frontal and parietal areas exclusively with speeded, but not with speed-corrected executive measures. The VBM analyses showed reduced gray matter in frontal areas. All three approaches confirmed the hypothesized fronto-parietal network disruption in early CMA. Innovative methods (DTI) converged with results from conventional methods (visual rating) while allowing greater spatial and tissue accuracy. They are thus valid additions to the analysis of neural correlates of cognitive dysfunction. We found a clear distinction between speeded and nonspeeded executive measures in relationship to imaging parameters. Cognitive slowing is related to disease severity in early CMA and therefore important for early diagnostics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: Lipids stored in adipose tissue can originate from dietary lipids or from de novo lipogenesis (DNL) from carbohydrates. Whether DNL is abnormal in adipose tissue of overweight individuals remains unknown. The present study was undertaken to assess the effect of carbohydrate overfeeding on glucose-induced whole body DNL and adipose tissue lipogenic gene expression in lean and overweight humans. DESIGN: Prospective, cross-over study. SUBJECTS AND METHODS: A total of 11 lean (five male, six female, mean BMI 21.0+/-0.5 kg/m(2)) and eight overweight (four males, four females, mean BMI 30.1+/-0.6 kg/m(2)) volunteers were studied on two occasions. On one occasion, they received an isoenergetic diet containing 50% carbohydrate for 4 days prior to testing; on the other, they received a hyperenergetic diet (175% energy requirements) containing 71% carbohydrates. After each period of 4 days of controlled diet, they were studied over 6 h after having received 3.25 g glucose/kg fat free mass. Whole body glucose oxidation and net DNL were monitored by means of indirect calorimetry. An adipose tissue biopsy was obtained at the end of this 6-h period and the levels of SREBP-1c, acetyl CoA carboxylase, and fatty acid synthase mRNA were measured by real-time PCR. RESULTS: After isocaloric feeding, whole body net DNL amounted to 35+/-9 mg/kg fat free mass/5 h in lean subjects and to 49+/-3 mg/kg fat free mass/5 h in overweight subjects over the 5 h following glucose ingestion. These figures increased (P<0.001) to 156+/-21 mg/kg fat free mass/5 h in lean and 64+/-11 mg/kg fat free mass/5 h (P<0.05 vs lean) in overweight subjects after carbohydrate overfeeding. Whole body DNL after overfeeding was lower (P<0.001) and glycogen synthesis was higher (P<0.001) in overweight than in normal subjects. Adipose tissue SREBP-1c mRNA increased by 25% in overweight and by 43% in lean subjects (P<0.05) after carbohydrate overfeeding, whereas fatty acid synthase mRNA increased by 66 and 84% (P<0.05). CONCLUSION: Whole body net DNL is not increased during carbohydrate overfeeding in overweight individuals. Stimulation of adipose lipogenic enzymes is also not higher in overweight subjects. Carbohydrate overfeeding does not stimulate whole body net DNL nor expression of lipogenic enzymes in adipose tissue to a larger extent in overweight than lean subjects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In mammals, glycogen synthesis and degradation are dynamic processes regulating blood and cerebral glucose-levels within a well-defined physiological range. Despite the essential role of glycogen in hepatic and cerebral metabolism, its spatiotemporal distribution at the molecular and cellular level is unclear. By correlating electron microscopy and ultra-high resolution ion microprobe (NanoSIMS) imaging of tissue from fasted mice injected with (13)C-labeled glucose, we demonstrate that liver glycogenesis initiates in the hepatocyte perinuclear region before spreading toward the cell membrane. In the mouse brain, we observe that (13)C is inhomogeneously incorporated into astrocytic glycogen at a rate ~25 times slower than in the liver, in agreement with prior bulk studies. This experiment, using temporally resolved, nanometer-scale imaging of glycogen synthesis and degradation, provides greater insight into glucose metabolism in mammalian organs and shows how this technique can be used to explore biochemical pathways in healthy and diseased states. FROM THE CLINICAL EDITOR: By correlating electron microscopy and ultra-high resolution ion microprobe imaging of tissue from fasting mice injected with (13)C-labeled glucose, the authors demonstrate a method to image glycogen metabolism at the nanometer scale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent evidence suggests that lactate could be a preferential energy substrate transferred from astrocytes to neurons. This would imply the presence of specific transporters for lactate on both cell types. We have investigated the immunohistochemical localization of two monocarboxylate transporters, MCT1 and MCT2, in the adult mouse brain. Using specific antibodies raised against MCT1 and MCT2, we found strong immunoreactivity for each transporter in glia limitans, ependymocytes and several microvessel-like elements. In addition, small processes distributed throughout the cerebral parenchyma were immunolabeled for monocarboxylate transporters. Double immunofluorescent labeling and confocal microscopy examination of these small processes revealed no co-localization between glial fibrillary acidic protein and monocarboxylate transporters, although many glial fibrillary acidic protein-positive processes were often in close apposition to elements labeled for monocarboxylate transporters. In contrast, several elements expressing the S100beta protein, another astrocytic marker found to be located in distinct parts of the same cell when compared with glial fibrillary acidic protein, were also strongly immunoreactive for MCT1, suggesting expression of this transporter by astrocytes. In contrast, MCT2 was expressed in a small subset of microtubule-associated protein-2-positive elements, indicating a neuronal localization. In conclusion, these observations are consistent with the possibility that lactate, produced and released by astrocytes (via MCT1), could be taken up (via MCT2) and used by neurons as an energy substrate.