926 resultados para CELL STIMULATORY FACTOR


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gamma aminohutyric acid (GAB A.) receptor tunctionaI status was artaIV se(l in pa It ial hcpatcctoIn ised.II'II). lead nitrate (LN) induced hyperplastic and N-nifrosodiethylantinc INDEAI treated nctplastic rat Iivers during peak DNA synthesis. The high-affinity I'HJGALA binding significantly decreased in PII and NDEi\ rats and the receptor affinity decreased in NDEA and increased in LN rats compared with control . in NDEA. displacement analysis of I'I IIGABA with muscimol showed loss of low-allinity site and a shill of high-allinity cite towards low-allinity . ' 1 he affinity sites shifted towards high-affinity in LN rats. 'file number of low-allinity 1'I Ilhicuc)lline receptors decreased cignilic:uttly in NDEA and I'll whereas it increased in LN rats. (ir\Bi\t receptor :gunist. unrscinrul. disc dependcnllyinhihilcd epidermal growth factor IEGI--) induced DNA synthesis :uul enhanced the tr:utsfnrnting grmvth )actor (Il I I'(il (tlI mediated DNA synthesis suppression in prim:uy hepalucvte cultures . Our results suggest that GABA,t reccjhtor act as an inhibitory signal fur hepatic cell prolifctatiun.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanoparticulate drug delivery systems provide wide opportunities for solving problems associated with drug stability or disease states and create great expectations in the area of drug delivery (Bosselmann & Williams, 2012). Nanotechnology, in a simple way, explains the technology that deals with one billionth of a meter scale (Ochekpe, et al., 2009). Fewer side effects, poor bioavailability, absorption at intestine, solubility, specific delivery to site of action with good pharmacological efficiency, slow release, degradation of drug and effective therapeutic outcome, are the major challenges faced by most of the drug delivery systems. To a great extent, biopolymer coated drug delivery systems coupled with nanotechnology alleviate the major drawbacks of the common delivery methods. Chitosan, deacetylated chitin, is a copolymer of β-(1, 4) linked glucosamine (deacetylated unit) and N- acetyl glucosamine (acetylated unit) (Radhakumary et al., 2005). Chitosan is biodegradable, non-toxic and bio compatible. Owing to the removal of acetyl moieties that are present in the amine functional groups of chitin, chitosan is readily soluble in aqueous acidic solution. The solubilisation occurs through the protonation of amino groups on the C-2 position of D-glucosamine residues whereby polysaccharide is converted into polycation in acidic media. Chitosan interacts with many active compounds due to the presence of amine group in it. The presence of this active amine group in chitosan was exploited for the interaction with the active molecules in the present study. Nanoparticles of chitosan coupled drugs are utilized for drug delivery in eye, brain, liver, cancer tissues, treatment of spinal cord injury and infections (Sharma et al., 2007; Li, et a., 2009; Paolicelli et al., 2009; Cho et al., 2010). To deliver drugs directly to the intended site of action and to improve pharmacological efficiency by minimizing undesired side effects elsewhere in the body and decrease the long-term use of many drugs, polymeric drug delivery systems can be used (Thatte et al., 2005).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Shrimp cell lines are yet to be reported and this restricts the prospects of investigating the associated viral pathogens, especially white spot syndrome virus (WSSV). In this context, development of primary cell cultures from lymphoid organs was standardized. Poly-l-lysine-coated culture vessels enhanced growth of lymphoid cells, while the application of vertebrate growth factors did not, except insulin-like growth factor-1 (IGF-1). Susceptibility of the lymphoid cells to WSSV was confirmed by immunofluoresence assay using monoclonal antibody against the 28 kDa envelope protein of WSSV. Expression of viral and immunerelated genes in WSSV-infected lymphoid cultures could be demonstrated by RT-PCR. This emphasizes the utility of lymphoid primary cell culture as a platform for research in virus–cell interaction, virus morphogenesis, up and downregulation of shrimp immune-related genes, and also for the discovery of novel drugs to combat WSSV in shrimp culture

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thin film solar cells having structure CuInS2/In2S3 were fabricated using chemical spray pyrolysis (CSP) technique over ITO coated glass. Top electrode was silver film (area 0.05 cm2). Cu/In ratio and S/Cu in the precursor solution for CuInS2 were fixed as 1.2 and 5 respectively. In/S ratio in the precursor solution for In2S3 was fixed as 1.2/8. An efficiency of 0.6% (fill factor -37.6%) was obtained. Cu diffusion to the In2S3 layer, which deteriorates junction properties, is inevitable in CuInS2/In2S3 cell. So to decrease this effect and to ensure a Cu-free In2S3 layer at the top of the cell, Cu/In ratio was reduced to 1. Then a remarkable increase in short circuit current density was occurred from 3 mA/cm2 to 14.8 mA/cm2 and an efficiency of 2.13% was achieved. Also when In/S ratio was altered to 1.2/12, the short circuit current density increased to 17.8 mA/cm2 with an improved fill factor of 32% and efficiency remaining as 2%. Thus Cu/In and In/S ratios in the precursor solutions play a crucial role in determining the cell parameters

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous work in yeast has suggested that modification of tRNAs, in particular uridine bases in the anticodon wobble position (U34), is linked to TOR (target of rapamycin) signaling. Hence, U34 modification mutants were found to be hypersensitive to TOR inhibition by rapamycin. To study whether this involves inappropriate TOR signaling, we examined interaction between mutations in TOR pathway genes (tip41Δ, sap190Δ, ppm1Δ, rrd1Δ) and U34 modification defects (elp3Δ, kti12Δ, urm1Δ, ncs2Δ) and found the rapamycin hypersensitivity in the latter is epistatic to drug resistance of the former. Epistasis, however, is abolished in tandem with a gln3Δ deletion, which inactivates transcription factor Gln3 required for TOR-sensitive activation of NCR (nitrogen catabolite repression) genes. In line with nuclear import of Gln3 being under control of TOR and dephosphorylation by the Sit4 phosphatase, we identify novel TOR-sensitive sit4 mutations that confer rapamycin resistance and importantly, mislocalise Gln3 when TOR is inhibited. This is similar to gln3Δ cells, which abolish the rapamycin hypersensitivity of U34 modification mutants, and suggests TOR deregulation due to tRNA undermodification operates through Gln3. In line with this, loss of U34 modifications (elp3Δ, urm1Δ) enhances nuclear import of and NCR gene activation (MEP2, GAP1) by Gln3 when TOR activity is low. Strikingly, this stimulatory effect onto Gln3 is suppressed by overexpression of tRNAs that usually carry the U34 modifications. Collectively, our data suggest that proper TOR signaling requires intact tRNA modifications and that loss of U34 modifications impinges on the TORsensitive NCR branch via Gln3 misregulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The insect neuropeptide pigment-dispersing factor (PDF) is a functional ortholog of vasoactive intestinal polypeptide, the coupling factor of the mammalian circadian pacemaker. Despite of PDF's importance for synchronized circadian locomotor activity rhythms its signaling is not well understood. We studied PDF signaling in primary cell cultures of the accessory medulla, the circadian pacemaker of the Madeira cockroach. In Ca2+ imaging studies four types of PDF-responses were distinguished. In regularly bursting type 1 pacemakers PDF application resulted in dose-dependent long-lasting increases in Ca2+ baseline concentration and frequency of oscillating Ca2+ transients. Adenylyl cyclase antagonists prevented PDF-responses in type 1 cells, indicating that PDF signaled via elevation of intracellular cAMP levels. In contrast, in type 2 pacemakers PDF transiently raised intracellular Ca2+ levels even after blocking adenylyl cyclase activity. In patch clamp experiments the previously characterized types 1–4 could not be identified. Instead, PDF-responses were categorized according to ion channels affected. Application of PDF inhibited outward potassium or inward sodium currents, sometimes in the same neuron. In a comparison of Ca2+ imaging and patch clamp experiments we hypothesized that in type 1 cells PDF-dependent rises in cAMP concentrations block primarily outward K+ currents. Possibly, this PDF-dependent depolarization underlies PDF-dependent phase advances of pacemakers. Finally, we propose that PDF-dependent concomitant modulation of K+ and Na+ channels in coupled pacemakers causes ultradian membrane potential oscillations as prerequisite to efficient synchronization via resonance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Genetic and epigenetic factors interacting with the environment over time are the main causes of complex diseases such as autoimmune diseases (ADs). Among the environmental factors are organic solvents (OSs), which are chemical compounds used routinely in commercial industries. Since controversy exists over whether ADs are caused by OSs, a systematic review and meta-analysis were performed to assess the association between OSs and ADs. Methods and Findings: The systematic search was done in the PubMed, SCOPUS, SciELO and LILACS databases up to February 2012. Any type of study that used accepted classification criteria for ADs and had information about exposure to OSs was selected. Out of a total of 103 articles retrieved, 33 were finally included in the meta-analysis. The final odds ratios (ORs) and 95% confidence intervals (CIs) were obtained by the random effect model. A sensitivity analysis confirmed results were not sensitive to restrictions on the data included. Publication bias was trivial. Exposure to OSs was associated to systemic sclerosis, primary systemic vasculitis and multiple sclerosis individually and also to all the ADs evaluated and taken together as a single trait (OR: 1.54; 95% CI: 1.25-1.92; p-value, 0.001). Conclusion: Exposure to OSs is a risk factor for developing ADs. As a corollary, individuals with non-modifiable risk factors (i.e., familial autoimmunity or carrying genetic factors) should avoid any exposure to OSs in order to avoid increasing their risk of ADs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dentro del estudio de la expresión de diferentes genes, el teleósteo Danio rerio (Pez cebra) ha sido modelo de estudio del desarrollo de los vertebrados. Esta especie es ventajosa para este fin por diferentes razones, entre- ellas están la producción de grandes camadas durante todo el año, son fácilmente mantenidos, sus embriones son transparentes y se desarrollan fuera de la madre, tienen un desarrollo rápido, ya que en las 24 horas post -fecundación ya están formados la mayor parte de tejidos y primordios de los órganos, se pueden generar mutantes que se pueden propagar y estudiar muy fácilmente. Este trabajo pretende mostrar la relación entre la expresión temprana del Factor de Crecimiento Fibroblástico tipo 8 (FGF8) y el desarrollo del Sistema Nervioso Central de esta especie.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introducción: El tratamiento con antagonistas del factor de necrosis tumoral alfa (anti TNF) ha impactado el pronóstico y la calidad de vida de los pacientes con artritis reumatoide (AR) positivamente, sin embargo, se interroga un incremento en el riesgo de desarrollar melanoma. Objetivo: Conocer la asociación entre el uso de anti TNF y el desarrollo de melanoma maligno en pacientes con AR. Metodología: Se realizó una búsqueda sistemática en MEDLINE, EMBASE, COCHRANE LIBRARY y LILACS para ensayos clínicos, estudios observacionales, revisiones y meta-análisis en pacientes adultos con diagnóstico de AR y manejo con anti TNF (Certolizumab pegol, Adalimumab, Etanercept, Infliximab y Golimumab). Resultados: 37 estudios clínicos cumplieron los criterios de inclusión para el meta-análisis, con una población de 16567 pacientes. El análisis de heterogeneidad no fue significativo (p=1), no se encontró diferencia en el riesgo entre los grupos comparados DR -0.00 (IC 95% -0.001; -0.001). Un análisis adicional de los estudios en los que se reportó al menos 1 caso de melanoma (4222 pacientes) tampoco mostró diferencia en el riesgo DR -0.00 (IC 95% -0.004 ; -0.003). Conclusión: En la evidencia disponible a la fecha no encontramos asociación significativa entre el tratamiento con anti TNF en pacientes con diagnóstico de AR y el desarrollo de melanoma cutáneo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 70kDa ribosomal protein S6 kinase 1 (S6K1) plays important roles in the regulation of protein synthesis, cell growth and metabolism. S6K1 is activated by the phosphorylation of multiple serine and threonine residues in response to stimulation by a variety of growth factors and cytokines. In addition to phosphorylation, we have recently shown that S6K1 is also targeted by lysine acetylation. Here, using tandem mass spectrometry we have mapped acetylation of S6K1 to lysine 516, a site close to the C-terminus of the kinase that is highly conserved amongst vertebrate S6K1 orthologues. Using acetyl-specific K516 antibodies, we show that acetylation of endogenous S6K1 at this site is potently induced upon growth factor stimulation. Although S6K1 acetylation and phosphorylation are both induced by growth factor stimulation, these events appear to be functionally independent. Indeed, experiments using inhibitors of S6K1 activation and exposure of cells to various stresses indicate that S6K1 acetylation can occur in the absence of phosphorylation and vice versa. We propose that K516 acetylation may serve to modulate important kinase-independent functions of S6K1 in response to growth factor signalling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Satellite cells, originating in the embryonic dermamyotome, reside beneath the myofibre of mature adult skeletal muscle and constitute the tissue-specific stem cell population. Recent advances following the identification of markers for these cells (including Pax7, Myf5, c-Met and CD34) (CD, cluster of differentiation; c-Met, mesenchymal epithelial transition factor) have led to a greater understanding of the role played by satellite cells in the regeneration of new skeletal muscle during growth and following injury. In response to muscle damage, satellite cells harbour the ability both to form myogenic precursors and to self-renew to repopulate the stem cell niche following myofibre damage. More recently, other stem cell populations including bone marrow stem cells, skeletal muscle side population cells and mesoangioblasts have also been shown to have myogenic potential in culture, and to be able to form skeletal muscle myofibres in vivo and engraft into the satellite cell niche. These cell types, along with satellite cells, have shown potential when used as a therapy for skeletal muscle wasting disorders where the intrinsic stem cell population is genetically unable to repair non-functioning muscle tissue. Accurate understanding of the mechanisms controlling satellite cell lineage progression and self-renewal as well as the recruitment of other stem cell types towards the myogenic lineage is crucial if we are to exploit the power of these cells in combating myopathic conditions. Here we highlight the origin, molecular regulation and therapeutic potential of all the major cell types capable of undergoing myogenic differentiation and discuss their potential therapeutic application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Trophoblast invasion is a temporally and spatially regulated scheme of events that can dictate pregnancy outcome. Evidence suggests that the potent mitogen epidermal growth factor (EGF) regulates cytotrophoblast (CTB) differentiation and invasion during early pregnancy. METHODS AND RESULTS: In the present study, the first trimester extravillous CTB cell line SGHPL-4 was used to investigate the signalling pathways involved in the motile component of EGF-mediated CTB migration/invasion. EGF induced the phosphorylation of the phosphatidylinositol 3-kinase (PI3-K)-dependent proteins, Akt and GSK-3β as well as both p42/44 MAPK and p38 mitogen-activated protein kinases (MAPK). EGF-stimulated motility was significantly reduced following the inhibition of PI3-K (P < 0.001), Akt (P < 0.01) and both p42/44 MAPK (P < 0.001) and p38 MAPKs (P < 0.001) but not the inhibition of GSK-3β. Further analysis indicated that the p38 MAPK inhibitor SB 203580 inhibited EGF-stimulated phosphorylation of Akt on serine 473, which may be responsible for the effect SB 203580 has on CTB motility. Although Akt activation leads to GSK-3β phosphorylation and the subsequent expression of β-catenin, activation of this pathway by 1-azakenpaullone was insufficient to stimulate the motile phenotype. CONCLUSION: We demonstrate a role for PI3-K, p42/44 MAPK and p38 MAPK in the stimulation of CTB cell motility by EGF, however activation of β-catenin alone was insufficient to stimulate cell motility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The virulence factor IpgD, delivered into nonphagocytic cells by the type III secretion system of the pathogen Shigella flexneri, is a phosphoinositide 4-phosphatase generating phosphatidylinositol 5 monophosphate (PtdIns(5) P). We show that PtdIns(5) P is rapidly produced and concentrated at the entry foci of the bacteria, where it colocalises with phosphorylated Akt during the first steps of infection. Moreover, S. flexneri-induced phosphorylation of host cell Akt and its targets specifically requires IpgD. Ectopic expression of IpgD in various cell types, but not of its inactive mutant, or addition of short-chain penetrating PtdIns(5) P is sufficient to induce Akt phosphorylation. Conversely, sequestration of PtdIns(5) P or reduction of its level strongly decreases Akt phosphorylation in infected cells or in IpgD-expressing cells. Accordingly, IpgD and PtdIns(5) P production specifically activates a class IA PI 3-kinase via a mechanism involving tyrosine phosphorylations. Thus, S. flexneri parasitism is shedding light onto a new mechanism of PI 3-kinase/Akt activation via PtdIns(5) P production that plays an important role in host cell responses such as survival.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Certain forkhead (FOX) transcription factors have been shown to play an intrinsic role in controlling cell cycle progression. In particular, the FoxO subclass has been shown to regulate cell cycle entry and exit, whereas the expression and activity of FoxM1 is important for the correct coupling of DNA synthesis to mitosis. In this chapter, I describe a method for measuring FoxO and FoxM1 transcription factor DNA binding in nuclear extracts from mammalian cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A cellular receptor for the haemagglutinating enteroviruses (HEV), and the protein that mediates haemagglutination, is the membrane complement regulatory protein decay accelerating factor (DAF; CD55). Although primate DAF is highly conserved, significant differences exist to enable cell lines derived from primates to be utilized for the characterization of the DAF binding phenotype of human enteroviruses. Thus, several distinct DAF-binding phenotypes of a selection of HEVs (viz. coxsackievirus A21 and echoviruses 6, 7, 11-13, 29) were identified from binding and infection assays using a panel of primate cells derived from human, orang-utan, African Green monkey and baboon tissues. These studies complement our recent determination of the crystal structure of SCR(34) of human DAF [Williams, P., Chaudhry, Y., Goodfellow, I. G., Billington, J., Powell, R., Spiller, O. B., Evans, D. J. & Lea, S. (2003). J Biol Chem 278, 10691-10696] and have enabled us to better map the regions of DAF with which enteroviruses interact and, in certain cases, predict specific virus-receptor contacts.