952 resultados para CD95, apoptosis, nitric oxide,tumor,CHOP,TRAIL
Resumo:
Peroxisome proliferator-activated receptor-alpha (PPAR alpha) is a member of the steroid hormone receptor superfamily. In rodents, PPAR alpha. alters genes involved in cell cycle regulation in hepatocytes. Some of these genes are implicated in neuronal cell death. Therefore, in this study, we examined the toxicological consequence of PPAR alpha activation in rat primary cultures of cerebellar granule neurons. Our studies demonstrated the presence of PPAR alpha mRNA in cultures by reverse transcriptase-polymerase chain reaction. After 10 days in vitro, cerebellar granule neuron cultures were incubated with the selective PPAR alpha activator 4-chloro-6-(2,3-xylidino)2-pyrimidinylthioacetic acid (Wy-14,643). The inherent toxicity of Wy-14,643 and the effect of PPAR alpha activation following toxic stimuli were assessed. In these studies, neurotoxicity was induced through reduction of extracellular [KCl] from 25 mM to 5.36 mM. We observed no inherent toxicity of Wy-1 4,643 (24 hr) in cultured cerebellar granule cells. However, after reduction of [KCl], cerebellar granule cell cultures incubated with Wy-14,643 showed significantly greater toxicity than controls. These results suggest a posssible role for PPAR(x in augmentation of cerebellar granule neuronal death after toxic stimuli. (C) 2001 Wiley-Liss, Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The immune responses are mediated by a variety cells and molecules that cells secreted. Macrophages are the first cells that participate in the immune response, and, when are activated, release more than hundred compounds at the extracelular medium, such as cytokine (TNF-α) and the intermediate compounds of the nitrogen (NO). In this paper the release of nitric oxide (NO) and necrose tumoral factor (TNF-α) were determined in peritoneal macrophage cultures of mice in the presence of the 70% ethanolic extract obtained from the flowers of the Melampodium divaricatum (Asteraceae) in the concentrations of 20, 10 and 5 mg/mL. The 70% ethanolic extracts from flowers of the Melampodium divaricatum presented higher liberation of NO and TNF-α in the concentration of the 20 mg/mL when compared with LPS. We conclude that this extract is a potente stimulator of macrophage, could be immunomodulatory activity.
Resumo:
Plants are a valuable source of natural products for the maintenance of human health. The purpose of this paper was the study of immunologic activity of yarrow (Achillea millefolium L.), a largely used plant in popular medicine that has many different properties such as: antiinflammatory, astringent, antiseptic and antispasmodic. Macrophages stimulation was evaluated by the determination of H2O2, NO and TNF-α in supernatants of peritoneal macrophages cultures of mice in the presence of the yarrow leaves extract. The thin layer chromatography of extract was also analyzed, showing rutin. All concentrations showed a moderate release of H2O2 and the concentrations of 6, 8 and 10mg/mL had a higher release of NO. The TNF-a was produced in all concentrations, but the best result was obtained at 4mg/mL. Analyzing the results, it is suggested that the yarrow ethanolic extract can modulate the macrophages activation.
Resumo:
Ethnopharmacological relevance: Lychnophora passerina (Asteraceae), popularly known as arnica, is used to treat inflammation, pain, rheumatism, contusions, bruises and insect bites in Brazilian traditional medicine. Materials and methods: The anti-inflammatory activity of crude ethanolic extract of aerial parts of L. passerina and its ethyl acetate and methanolic fractions had their abilities to modulate the production of NO, TNF-α and IL-10 inflammatory mediators in LPS/IFN-γ-stimulated J774.A1 macrophages evaluated. Moreover, the crude ethanolic extract and derived fractions were also in vivo assayed by carrageenan-induced paw oedema in mice. Results: In vitro assays showed remarkable anti-inflammatory activity of L. passerina crude ethanolic extract (EE) and its ethyl acetate (A) and methanolic (M) fractions, through the inhibition of production of NO and TNF-α inflammatory mediators and induction of production of IL-10 anti-inflammatory cytokine. In vivo assays showed anti-inflammatory activity for EE 10% ointment, similar to the standard drug diclofenac gel. The A and M fraction ointments 20% presented anti-inflammatory activity. Conclusion: The results obtained showed that possible anti-inflammatory effects of EE and its A and M fractions may be attributed to inhibition pro-inflammatory cytokines production, TNF-α and NO and to increased IL-10 production. EE, A and M ointments showed topical in vivo anti-inflammatory activity. The in vivo anti-inflammatory activity of EE of L. passerina may be related to synergistic effects of different substances in the crude extract. Therefore, traditional use of aerial parts of L. passerina in the inflammatory conditions could be beneficial to treat topical inflammatory conditions, as evidenced by the present study. © 2011 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
While effector molecules produced by activated macrophages (including nitric oxide, tumor necrosis factor α, interleukin 1, etc.) help to eliminate pathogens, high levels of these molecules can be deleterious to the host itself. Despite their importance, the mechanisms modulating macrophage effector functions are poorly understood. This work introduces two key negative regulators that control the levels and duration of macrophage cytokine production. Vacuolar-type H+-ATPase (V-ATPase) and calcineurin (Cn) constitutively act in normal macrophages to suppress expression of inflammatory cytokines in the absence of specific activation and to inhibit macrophage cytokine responses induced by bacterial lipopolysaccharide (V-ATPase), interferon γ (V-ATPase and Cn), and calcium (Ca2+) flux (Cn). Cn and V-ATPase modulate effector gene expression at the mRNA level by inhibiting transcription factor NF-κB. This negative regulation by Cn is opposite to its crucial positive role in T cells, where it activates NFAT transcription factor(s) leading to expression of interleukin 2, tumor necrosis factor α, and other cytokine genes. The negative effects of V-ATPase and Cn on NF-κB-dependent gene expression are not limited to the macrophage lineage, as similar effects have been seen with a murine fibroblast cell line and with primary astrocytes.
Resumo:
Purpose: To investigate whether Citrus sudachi harvested at two stages of maturity can induce toxicity in a cell-specific manner and to determine the possible mechanisms of Citrus sudachi-induced cytotoxic responses in two types of cancer cells (human lung adenocarcinoma A549 and hepatocellular carcinoma HepG2 cells) and two normal cell lines (lung 16HBE140- and liver CHANG cells). Methods: 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and annexin V/propidium iodidle assay were used to test the antiproliferative activity and apoptosis of methanol extract of Citrus sudachi, respectively. Griess reaction and reverse transcriptase-polymerase chain reaction (RT-PCR) were carried out to evaluate nitric oxide (NO•) production and the mRNA levels of inhibitors of apoptosis (IAP). Results: Citrus sudachi exerted cytotoxicity in a time-dependent manner in cancer cells which increased with increase in maturity but did not affect normal cells. Citrus sudachi was found to induce accumulation of cells in the sub-G1 cell cycle phase, fragmentation of DNA and cell death with characteristics of apoptosis, in both types of cancer cells. Moreover, Citrus sudachi upregulated cellular NO• produced by activation of nitric oxide synthase (NOS), while it suppressed the levels of IAP mRNA in both types of cancer cells. Conclusion: The results obtained suggest that Citrus sudachi induces apoptosis in A549 and HepG2 cells, which may be mediated by NO•. There is need for further studies on the role of Citrus sudachi in cancer treatment.
Resumo:
The aim of this study was to determine the apoptotic pathways and mechanisms involved in electronegative LDL [LDL(-)]-induced apoptosis in RAW 264.7 macrophages and the role of Nrf2 in this process. Incubation of RAW 264 7 macrophages with LDL(-) for 24 11 resulted in dose-dependent cell death. Activated caspases were shown to be involved in the apoptosis induced by LDL(-): incubation with the broad caspase inhibitor z-VAD prevented apoptosis in LDL(-)-treated cells CD95 (Fas), CD95 ligand (FasL). CD36 and the tumor necrosis factor (TNF) ligand Tnfsf10 were overexpressed in LDL(-)-treated cells However, Bax, Bcl-2 and Mcl-1 protein levels remained unchanged after LDL(-) treatment. LDL(-) promoted hyperpolarization of the mitochondrial membrane, elevated reactive oxygen species (ROS) production and translocation of Nrf2 to the nucleus, a process absent in cells treated with native LDL Elicited peritoneal macrophages from Nrf2-deficient mice exhibited an elevated apoptotic response after challenge with LDL(-), together with an increase in the production of ROS in the absence of alterations in CD36 expression These results provide evidence that CD36 expression induced by LDL(-) is Nrf2-dependent. Also, it was demonstrated that Nrf2 acts as a compensatory mechanism of LDL(-)-induced apoptosis in macrophages. (C) 2009 Elsevier B V. All rights reserved
Resumo:
Overexpression of the tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) receptors, TRAIL-R1 and TRAIL-R2, induces apoptosis and activation of NF-kappaB in cultured cells. In this study, we have demonstrated differential signaling capacities by both receptors using either epitope-tagged soluble TRAIL (sTRAIL) or sTRAIL that was cross-linked with a monoclonal antibody. Interestingly, sTRAIL was sufficient for induction of apoptosis only in cell lines that were killed by agonistic TRAIL-R1- and TRAIL-R2-specific IgG preparations. Moreover, in these cell lines interleukin-6 secretion and NF-kappaB activation were induced by cross-linked or non-cross-linked anti-TRAIL, as well as by both receptor-specific IgGs. However, cross-linking of sTRAIL was required for induction of apoptosis in cell lines that only responded to the agonistic anti-TRAIL-R2-IgG. Interestingly, activation of c-Jun N-terminal kinase (JNK) was only observed in response to either cross-linked sTRAIL or anti-TRAIL-R2-IgG even in cell lines where both receptors were capable of signaling apoptosis and NF-kappaB activation. Taken together, our data suggest that TRAIL-R1 responds to either cross-linked or non-cross-linked sTRAIL which signals NF-kappaB activation and apoptosis, whereas TRAIL-R2 signals NF-kappaB activation, apoptosis, and JNK activation only in response to cross-linked TRAIL.
Resumo:
Tumor necrosis factor (TNF) ligand and receptor superfamily members play critical roles in diverse developmental and pathological settings. In search for novel TNF superfamily members, we identified a murine chromosomal locus that contains three new TNF receptor-related genes. Sequence alignments suggest that the ligand binding regions of these murine TNF receptor homologues, mTNFRH1, -2 and -3, are most homologous to those of the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptors. By using a number of in vitro ligand-receptor binding assays, we demonstrate that mTNFRH1 and -2, but not mTNFRH3, bind murine TRAIL, suggesting that they are indeed TRAIL receptors. This notion is further supported by our demonstration that both mTNFRH1:Fc and mTNFRH2:Fc fusion proteins inhibited mTRAIL-induced apoptosis of Jurkat cells. Unlike the only other known murine TRAIL receptor mTRAILR2, however, neither mTNFRH2 nor mTNFRH3 has a cytoplasmic region containing the well characterized death domain motif. Coupled with our observation that overexpression of mTNFRH1 and -2 in 293T cells neither induces apoptosis nor triggers NFkappaB activation, we propose that the mTnfrh1 and mTnfrh2 genes encode the first described murine decoy receptors for TRAIL, and we renamed them mDcTrailr1 and -r2, respectively. Interestingly, the overall sequence structures of mDcTRAILR1 and -R2 are quite distinct from those of the known human decoy TRAIL receptors, suggesting that the presence of TRAIL decoy receptors represents a more recent evolutionary event.
Resumo:
Type 1 diabetes is characterized by the infiltration of activated leukocytes within the pancreatic islets, leading to beta-cell dysfunction and destruction. The exact role played by interferon-gamma, tumor necrosis factor (TNF)-alpha, and interleukin-1beta in this pathogenic process is still only partially understood. To study cytokine action at the cellular level, we are working with the highly differentiated insulin-secreting cell line, betaTc-Tet. We previously reported that it was susceptible to apoptosis induced by TNF-alpha, in combination with interleukin-1beta and interferon-gamma. Here, we report that cytokine-induced apoptosis was correlated with the activation of caspase-8. We show that in betaTc-Tet cells, overexpression of cFLIP, the cellular FLICE (FADD-like IL-1beta-converting enzyme)-inhibitory protein, completely abolished cytokine-dependent activation of caspase-8 and protected the cells against apoptosis. Furthermore, cFLIP overexpression increased the basal and interleukin-1beta-mediated transcriptional activity of nuclear factor (NF)-kappaB, whereas it did not change cytokine-induced inducible nitric oxide synthase gene transcription and nitric oxide secretion. The presence of cFLIP prevented the weak TNF-alpha-induced reduction in cellular insulin content and secretion; however, it did not prevent the decrease in glucose-stimulated insulin secretion induced by the combined cytokines, in agreement with our previous data demonstrating that interferon-gamma alone could induce these beta-cell dysfunctions. Together, our data demonstrate that overexpression of cFLIP protects mouse beta-cells against TNF-alpha-induced caspase-8 activation and apoptosis and is correlated with enhanced NF-kappaB transcriptional activity, suggesting that cFLIP may have an impact on the outcome of death receptor-triggered responses by directing the intracellular signals from beta-cell death to beta-cell survival.
Resumo:
A novel member of the tumor necrosis factor (TNF) receptor family, designated TRAMP, has been identified. The structural organization of the 393 amino acid long human TRAMP is most homologous to TNF receptor 1. TRAMP is abundantly expressed on thymocytes and lymphocytes. Its extracellular domain is composed of four cysteine-rich domains, and the cytoplasmic region contains a death domain known to signal apoptosis. Overexpression of TRAMP leads to two major responses, NF-kappaB activation and apoptosis. TRAMP-induced cell death is inhibited by an inhibitor of ICE-like proteases, but not by Bcl-2. In addition, TRAMP does not appear to interact with any of the known apoptosis-inducing ligands of the TNF family.
Resumo:
Members of the tumor necrosis factor (TNF) receptor superfamily and their activating ligands transmit apoptotic signals in a variety of systems. We now show that the binding of TNF-related, apoptosis-inducing ligand (TRAIL) to its cellular receptors DR5 (TRAILR2) and DR4 (TRAILR1) mediates reovirus-induced apoptosis. Anti-TRAIL antibody and soluble TRAIL receptors block reovirus-induced apoptosis by preventing TRAIL-receptor binding. In addition, reovirus induces both TRAIL release and an increase in the expression of DR5 and DR4 in infected cells. Reovirus-induced apoptosis is also blocked following inhibition of the death receptor-associated, apoptosis-inducing molecules FADD (for FAS-associated death domain) and caspase 8. We propose that reovirus infection promotes apoptosis via the expression of DR5 and the release of TRAIL from infected cells. Virus-induced regulation of the TRAIL apoptotic pathway defines a novel mechanism for virus-induced apoptosis.
Resumo:
Although death receptors and chemotherapeutic drugs activate distinct apoptosis signaling cascades, crosstalk between the extrinsic and intrinsic apoptosis pathway has been recognized as an important amplification mechanism. Best known in this regard is the amplification of the Fas (CD95) signal in hepatocytes via caspase 8-mediated cleavage of Bid and activation of the mitochondrial apoptosis pathway. Recent evidence, however, indicates that activation of other BH3-only proteins may also be critical for the crosstalk between death receptors and mitochondrial triggers. In this study, we show that TNF-related apoptosis-inducing ligand (TRAIL) and chemotherapeutic drugs synergistically induce apoptosis in various transformed and untransformed liver-derived cell lines, as well as in primary human hepatocytes. Both, preincubation with TRAIL as well as chemotherapeutic drugs could sensitize cells for apoptosis induction by the other respective trigger. TRAIL induced a strong and long lasting activation of Jun kinase, and activation of the BH3-only protein Bim. Consequently, synergistic induction of apoptosis by TRAIL and chemotherapeutic drugs was dependent on Jun kinase activity, and expression of Bim and Bid. These findings confirm a previously defined role of TRAIL and Bim in the regulation of hepatocyte apoptosis, and demonstrate that the TRAIL-Jun kinase-Bim axis is a major and important apoptosis amplification pathway in primary hepatocytes and liver tumor cells.