952 resultados para C. Computational simulation
Resumo:
The complex problem of a collisionally pumped Ne-like geranium laser is examined through several detailed models. The central model is EHYBRID; a 1 1/2D fluid code which self consistently treats the plasma expansion with the atomic physics of the Ne-like ion for 124 excited levels through a collisional radiative treatment. The output of EHYBRID is used as data for ray-tracing and saturation codes which generate experimental observables. A detailed description of the models is given.
Resumo:
Purpose:
To develop a model to describe the response of cell populations to spatially modulated radiation exposures of relevance to advanced radiotherapies.
Materials and Methods:
A Monte Carlo model of cellular radiation response was developed. This model incorporated damage from both direct radiation and intercellular communication including bystander signaling. The predictions of this model were compared to previously measured survival curves for a normal human fibroblast line (AGO1522) and prostate tumor cells (DU145) exposed to spatially modulated fields.
Results:
The model was found to be able to accurately reproduce cell survival both in populations which were directly exposed to radiation and those which were outside the primary treatment field. The model predicts that the bystander effect makes a significant contribution to cell killing even in uniformly irradiated cells. The bystander effect contribution varies strongly with dose, falling from a high of 80% at low doses to 25% and 50% at 4 Gy for AGO1522 and DU145 cells, respectively. This was verified using the inducible nitric oxide synthase inhibitor aminoguanidine to inhibit the bystander effect in cells exposed to different doses, which showed significantly larger reductions in cell killing at lower doses.
Conclusions:
The model presented in this work accurately reproduces cell survival following modulated radiation exposures, both in and out of the primary treatment field, by incorporating a bystander component. In addition, the model suggests that the bystander effect is responsible for a significant portion of cell killing in uniformly irradiated cells, 50% and 70% at doses of 2 Gy in AGO1522 and DU145 cells, respectively. This description is a significant departure from accepted radiobiological models and may have a significant impact on optimization of treatment planning approaches if proven to be applicable in vivo.
Resumo:
A strain gauge instrumentation trial on a high pressure die casting ‘HPDC’ die was compared to a corresponding simulation model using Magmasoft® casting simulation software at two strain gauge rosette locations. The strains were measured during the casting cycle, from which the von Mises stress was determined and then compared to the simulation model. The von Mises stress from the simulation model correlated well with the findings from the instrumentation trial, showing a difference of 5.5%, ~ 10 MPa for one strain gauge rosette located in an area of low stress gradient. The second rosette was in a region of steep stress gradient, which resulted in a difference of up to 40%, ~40 MPa between the simulation and instrumentation results. Factors such as additional loading from die closure force or metal injection pressure which are not modelled by Magmasoft® were seen to have very little influence on the stress in the die, less than 7%.
Resumo:
Realising high performance image and signal processing
applications on modern FPGA presents a challenging implementation problem due to the large data frames streaming through these systems. Specifically, to meet the high bandwidth and data storage demands of these applications, complex hierarchical memory architectures must be manually specified
at the Register Transfer Level (RTL). Automated approaches which convert high-level operation descriptions, for instance in the form of C programs, to an FPGA architecture, are unable to automatically realise such architectures. This paper
presents a solution to this problem. It presents a compiler to automatically derive such memory architectures from a C program. By transforming the input C program to a unique dataflow modelling dialect, known as Valved Dataflow (VDF), a mapping and synthesis approach developed for this dialect can
be exploited to automatically create high performance image and video processing architectures. Memory intensive C kernels for Motion Estimation (CIF Frames at 30 fps), Matrix Multiplication (128x128 @ 500 iter/sec) and Sobel Edge Detection (720p @ 30 fps), which are unrealisable by current state-of-the-art C-based synthesis tools, are automatically derived from a C description of the algorithm.
Resumo:
This paper provides an overview of the basic theory underlying 1D unsteady gas dynamics, the computational method developed at Queen’s University Belfast (QUB), the use of CFD as an alternative and some experimental results that demonstrate the techniques used to develop the mathematical models.
Resumo:
The relationships among organisms and their surroundings can be of immense complexity. To describe and understand an ecosystem as a tangled bank, multiple ways of interaction and their effects have to be considered, such as predation, competition, mutualism and facilitation. Understanding the resulting interaction networks is a challenge in changing environments, e.g. to predict knock-on effects of invasive species and to understand how climate change impacts biodiversity. The elucidation of complex ecological systems with their interactions will benefit enormously from the development of new machine learning tools that aim to infer the structure of interaction networks from field data. In the present study, we propose a novel Bayesian regression and multiple changepoint model (BRAM) for reconstructing species interaction networks from observed species distributions. The model has been devised to allow robust inference in the presence of spatial autocorrelation and distributional heterogeneity. We have evaluated the model on simulated data that combines a trophic niche model with a stochastic population model on a 2-dimensional lattice, and we have compared the performance of our model with L1-penalized sparse regression (LASSO) and non-linear Bayesian networks with the BDe scoring scheme. In addition, we have applied our method to plant ground coverage data from the western shore of the Outer Hebrides with the objective to infer the ecological interactions. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The plasma dynamics resulting from the simultaneous impact, of two equal, ultra-intense laser pulses, in two spatially separated spots, onto a dense target is studied via particle-in-cell simulations. The simulations show that electrons accelerated to relativistic speeds cross the target and exit at its rear surface. Most energetic electrons are bound to the rear surface by the ambipolar electric field and expand along it. Their current is closed by a return current in the target, and this current configuration generates strong surface magnetic fields. The two electron sheaths collide at the midplane between the laser impact points. The magnetic repulsion between the counter-streaming electron beams separates them along the surface normal direction, before they can thermalize through other beam instabilities. This magnetic repulsion is also the driving mechanism for the beam-Weibel (filamentation) instability, which is thought to be responsible for magnetic field growth close to the internal shocks of gamma-ray burst jets. The relative strength of this repulsion compared to the competing electrostatic interactions, which is evidenced by the simulations, suggests that the filamentation instability can be examined in an experimental setting. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4768426]
Resumo:
The performance of a louver-cooling scheme on a flat plate was analyzed using a detached-eddy-simulation turbulence model. It was assumed that the louver-cooling scheme was tested in a wind tunnel with the mainstream flow velocity of 20 m/s, equivalent to a Reynolds number of 16,200, based on the jet diameter. Turbulence closure was achieved by a realizable k-e-based detached-eddy-simulation turbulence model. Solutions of two blowing ratios of 0.5 and 1 were successfully obtained by running parallel on 16 nodes on a computer cluster. The flowfields were found to be highly unsteady and oscillatory in nature, with the maximum fluctuation of the adiabatic effectiveness as high as 15% of the time-averaged value. It is shown that the fluctuations in the adiabatic effectiveness are mainly caused by the spanwise fluctuation of the coolant jet and the unsteady vortical structures created by the interaction of the jet and the mainstream.