994 resultados para Céline
Resumo:
Phylogeographic analyses of the fauna of the Australian wet tropics rainforest have provided strong evidence for long-term isolation of populations among allopatric refugia, yet typically there is no corresponding divergence in morphology. This system provides an opportunity to examine the consequences of geographic isolation, independent of morphological divergence, and thus to assess the broader significance of historical subdivisions revealed through mitochondrial DNA phylogeography. We have located and characterized a zone of secondary contact between two long isolated (mtDNA divergence > 15%) lineages of the skink Carlia rubrigularis using one mitochondrial and eight nuclear (two intron, six microsatellite) markers. This revealed a remarkably narrow (width < 3 km) hybrid zone with substantial linkage disequilibrium and strong deficits of heterozygotes at two of three nuclear loci with diagnostic alleles. Cline centers were coincident across loci. Using a novel form of likelihood analysis, we were unable to distinguish between sigmoidal and stepped cline shapes except at one nuclear locus for which the latter was inferred. Given estimated dispersal rates of 90-133 m x gen(-1/2) and assuming equilibrium, the observed cline widths suggest effective selection against heterozygotes of at least 22-49% and possibly as high as 70%. These observations reveal substantial postmating isolation, although the absence of consistent deviations from Hardy-Weinberg equilibrium at diagnostic loci suggests that there is little accompanying premating isolation. The tight geographic correspondence between transitions in mtDNA and those for nuclear genes and corresponding evidence for selection against hybrids indicates that these morphologically cryptic phylogroups could be considered as incipient species. Nonetheless, we caution against the use of mtDNA phylogeography as a sole criterion for defining species boundaries.
Resumo:
Les études typologiques (Hagège 1993, Bybee et al.1994, Dahl 2000, Bourdin 2008 notamment) ont montré de façon consistante que les indications spatiales (notamment les verbes de mouvement) tendaient à se grammaticaliser en expressions temporelles. La forme itive (en français aller) dans les langues romanes a fait l’objet de ce processus linguistique , et avec succès, puisque, en tant qu’auxiliaire d’un verbe à l’infinitif ou au participe présent (et moins fréquemment au participe passé), elle est à même d’offrir, au cours de son histoire, pas moins de onze emplois grammaticalisés (Bres et Labeau à paraître). Nous nous intéresserons dans cet article, qui ne portera que sur le français, à l’emploi que nous nommerons, avec Larreya (2005) et Lansari (2009), narratif: il apparaît en textualité narrative, dont les propositions du premier plan sont régies par la relation de progression (Labov 1972/1978). Cet emploi que le français a connu jusqu’au début du XVIIème (1) tend, sur des bases peut-être différentes, à se répandre aujourd’hui (2): (1) Sur ces propos, feirent leur accord, et, en regardant le lieu le plus propre pour faire ceste belle oeuvre, elle vat dire qu'elle n'en sçavoit poinct de meilleure ne plus loing de tout soupson, que une petite maison qui estoit dedans le parc, où il y avoit chambre et lict tout à propos. Le gentil homme, qui n'eust trouvé nul lieu mauvais, se contenta de cestuy-là. (Navarre M. de, L'Heptaméron, 1550) (2) (…) Teddy Pendergrass est remarqué par Harold Melvin, leader du quintette vocal The Blue Notes. Il rejoint alors la formation, qui va enchaîner une succession de tubes. En 1976, Teddy Pendergrass décide de mener une carrière solo et quitte les Blue Notes . Il va régulièrement occuper les premières places des meilleures ventes de disques aux USA. (Le Monde, Obituaire de T. Pendergrass, 27 .1. 2010)
Resumo:
The hydrodynamics of tree islands during the growth of newly planted trees has been found to be influenced by both vegetation biomass and geologic conditions. From July 2007 through June 2009, groundwater and surface-water levels were monitored on eight recently planted tree islands at the Loxahatchee Impoundment Landscape Assessment (LILA) facility in Boynton Beach, Florida, USA. Over the 2-year study, stand development coincided with the development of a water-table depression in the center of each of the islands that was bounded by a hydraulic divide along the edges. The water-table depression was greater in islands composed of limestone as compared to those composed of peat. The findings of this study suggest that groundwater evapotranspiration by trees on tree islands creates complex hydrologic interactions between the shallow groundwater in tree islands and the surrounding surface water and groundwater bodies.
Resumo:
Recently, evapotranspiration has been hypothesized to promote the secondary formation of calcium carbonate year-round on tree islands in the Everglades by influencing groundwater ions concentrations. However, the role of recharge and evapotranspiration as drivers of shallow groundwater ion accumulation has not been investigated. The goal of this study is to develop a hydrologic model that predicts the chloride concentrations of shallow tree island groundwater and to determine the influence of overlying biomass and underlying geologic material on these concentrations. Groundwater and surface water levels and chloride concentrations were monitored on eight constructed tree islands at the Loxahatchee Impoundment Landscape Assessment (LILA) from 2007 to 2010. The tree islands at LILA were constructed predominately of peat, or of peat and limestone, and were planted with saplings of native tree species in 2006 and 2007. The model predicted low shallow groundwater chloride concentrations when inputs of regional groundwater and evapotranspiration-to-recharge rates were elevated, while low evapotranspiration-to-recharge rates resulted in a substantial increase of the chloride concentrations of the shallow groundwater. Modeling results indicated that evapotranspiration typically exceeded recharge on the older tree islands and those with a limestone lithology, which resulted in greater inputs of regional groundwater. A sensitivity analysis indicated the shallow groundwater chloride concentrations were most sensitive to alterations in specific yield during the wet season and hydraulic conductivity in the dry season. In conclusion, the inputs of rainfall, underlying hydrologic properties of tree islands sediments and forest structure may explain the variation in ion concentration seen across Everglades tree islands.
Resumo:
Questions: How are the early survival and growth of seedlings of Everglades tree species planted in an experimental setting on artificial tree islands affected by hydrology and substrate type? What are the implications of these responses for broader tree island restoration efforts? Location: Loxahatchee Impoundment Landscape Assessment (LILA), Boynton Beach, Florida, USA. Methods: An experiment was designed to test hydrological and substrate effects on seedling growth and survivorship. Two islands – a peat and a limestone-core island representing two major types found in the Everglades – were constructed in four macrocosms. A mixture of eight tree species was planted on each island in March of 2006 and 2007. Survival and height growth of seedlings planted in 2006 were assessed periodically during the next two and a half years. Results: Survival and growth improved with increasing elevation on both tree island substrate types. Seedlings' survival and growth responses along a moisture gradient matched species distributions along natural hydrological gradients in the Everglades. The effect of substrate on seedling performance showed higher survival of most species on the limestone tree islands, and faster growth on their peat-based counterparts. Conclusions: The present results could have profound implications for restoration of forests on existing landforms and artificial creation of tree islands. Knowledge of species tolerance to flooding and responses to different edaphic conditions present in wetlands is important in selecting suitable species to plant on restored tree islands
Resumo:
Understanding habitat selection and movement remains a key question in behavioral ecology. Yet, obtaining a sufficiently high spatiotemporal resolution of the movement paths of organisms remains a major challenge, despite recent technological advances. Observing fine-scale movement and habitat choice decisions in the field can prove to be difficult and expensive, particularly in expansive habitats such as wetlands. We describe the application of passive integrated transponder (PIT) systems to field enclosures for tracking detailed fish behaviors in an experimental setting. PIT systems have been applied to habitats with clear passageways, at fixed locations or in controlled laboratory and mesocosm settings, but their use in unconfined habitats and field-based experimental setups remains limited. In an Everglades enclosure, we continuously tracked the movement and habitat use of PIT-tagged centrarchids across three habitats of varying depth and complexity using multiple flatbed antennas for 14 days. Fish used all three habitats, with marked species-specific diel movement patterns across habitats, and short-lived movements that would be likely missed by other tracking techniques. Findings suggest that the application of PIT systems to field enclosures can be an insightful approach for gaining continuous, undisturbed and detailed movement data in unconfined habitats, and for experimentally manipulating both internal and external drivers of these behaviors.
Resumo:
The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present dataset contains navigation and meteorological data measured during one campaign of the Tara Oceans Expedition. Latitude and Longitude were obtained from TSG data.
Resumo:
The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present dataset contains navigation and meteorological data measured during one campaign of the Tara Oceans Expedition. Latitude and Longitude were obtained from TSG data.
Resumo:
The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present dataset contains navigation and meteorological data measured during one campaign of the Tara Oceans Expedition. Latitude and Longitude were obtained from TSG data.
Resumo:
The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present dataset contains navigation and meteorological data measured during one campaign of the Tara Oceans Expedition. Latitude and Longitude were obtained from TSG data.
Resumo:
The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present dataset contains navigation and meteorological data measured during one campaign of the Tara Oceans Expedition. Latitude and Longitude were obtained from TSG data.
Resumo:
The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present dataset contains navigation and meteorological data measured during one campaign of the Tara Oceans Expedition. Latitude and Longitude were obtained from TSG data.
Resumo:
The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present dataset contains navigation and meteorological data measured during one campaign of the Tara Oceans Expedition. Latitude and Longitude were obtained from TSG data.
Resumo:
The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present dataset contains navigation and meteorological data measured during one campaign of the Tara Oceans Expedition. Latitude and Longitude were obtained from TSG data.
Resumo:
The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present dataset contains navigation and meteorological data measured during one campaign of the Tara Oceans Expedition. Latitude and Longitude were obtained from TSG data.