996 resultados para Brain Structures
Resumo:
Recently, we proposed the hypothesis according to wich the central hypotensive effect of clonidine and related substances could be related to an action upon specific receptors, requiring the imidazoline or imidazoline-like structures, rather than alpha2-adrenoceptors. Since then, direct evidences have been accumulated to confirm the existence of a population of imidazoline specific binding sites in the brainstem of animals and man, more precisely in the Nucleus Reticularis Lateralis (NRL) region of the ventrolateral medulla (VLM), site of the antihypertensive action of clonidine. The purification of the putative endogenous ligand of the imidazoline receptors - named endazoline - is currently being attempted from human brain extracts. This new concept might at last lead to the expected dissociation of the pharmacological mechanisms involved, on the one hand, in the therapeutic antihypertensive effect, and on the other, in their major side-effect, which is sedation. In fact, it has been recently confirmed that hypotension is mediated by the activation of imidazoline preferring receptors (IPR) within the NRL region, while sedation is attributed to the inhibition of alpha2-adrenergic mechanisms in the locus coeruleus, which is involved in the control of the sleep-waking cycle. The IPRmay constitute on interesting target for new drugs in the treatment of arterial hypertension. Finally, dysfunctions of this modulatory system which could be involved in the pathophysiologyof some forms of the hypertensive disease are under investigation.
Resumo:
High doses of dextromethorphan (20-42 mg/kg/day) were given to four critically ill children with seizures and frequent epileptiform abnormalities in the EEG that were refractory to antiepileptic drugs. Their acute diseases (hypoxia, head trauma and hypoxia, neurodegenerative disease, hypoglycaemia) were thought to be due in part to N-methyl-D-aspartate (NMDA) receptor mediated processes. Treatment with dextromethorphan, an NMDA receptor antagonist, was started between 48 hours and 14 days after the critical incident. In three patients the EEG improved considerably within 48 hours and seizures ceased within 72 hours. In the patient with neurodegenerative disease the effect on the EEG was impressive, but the seizures were not controlled. Despite the improvement of the EEG the clinical outcome was poor in all children: three died in the critical period or due to the progressing disease; the patient with hypoglycaemia survived with severe neurological sequelae. Plasma concentrations of dextromethorphan varied between 74-1730 ng/ml and its metabolite dextrorphan varied between 349-3790 ng/ml. In one patient corresponding concentrations in CSF were lower than those in plasma. The suppression of epileptic discharges by the doses of dextromethorphan given suggests that such doses are sufficient to block NMDA receptors.
Resumo:
Interaural intensity and time differences (IID and ITD) are two binaural auditory cues for localizing sounds in space. This study investigated the spatio-temporal brain mechanisms for processing and integrating IID and ITD cues in humans. Auditory-evoked potentials were recorded, while subjects passively listened to noise bursts lateralized with IID, ITD or both cues simultaneously, as well as a more frequent centrally presented noise. In a separate psychophysical experiment, subjects actively discriminated lateralized from centrally presented stimuli. IID and ITD cues elicited different electric field topographies starting at approximately 75 ms post-stimulus onset, indicative of the engagement of distinct cortical networks. By contrast, no performance differences were observed between IID and ITD cues during the psychophysical experiment. Subjects did, however, respond significantly faster and more accurately when both cues were presented simultaneously. This performance facilitation exceeded predictions from probability summation, suggestive of interactions in neural processing of IID and ITD cues. Supra-additive neural response interactions as well as topographic modulations were indeed observed approximately 200 ms post-stimulus for the comparison of responses to the simultaneous presentation of both cues with the mean of those to separate IID and ITD cues. Source estimations revealed differential processing of IID and ITD cues initially within superior temporal cortices and also at later stages within temporo-parietal and inferior frontal cortices. Differences were principally in terms of hemispheric lateralization. The collective psychophysical and electrophysiological results support the hypothesis that IID and ITD cues are processed by distinct, but interacting, cortical networks that can in turn facilitate auditory localization.
Resumo:
Lentiviral vectors infect quiescent cells and allow for the delivery of genes to discrete brain regions. The present study assessed whether stable lentiviral gene transduction can be achieved in the monkey nigrostriatal system. Three young adult Rhesus monkeys received injections of a lentiviral vector encoding for the marker gene beta galatosidase (beta Gal). On one side of the brain, each monkey received multiple lentivirus injections into the caudate and putamen. On the opposite side, each animal received a single injection aimed at the substantia nigra. The first two monkeys were sacrificed 1 month postinjection, while the third monkey was sacrificed 3 months postinjection. Robust incorporation of the beta Gal gene was seen in the striatum of all three monkeys. Stereological counts revealed that 930,218; 1,192,359; and 1,501,217 cells in the striatum were beta Gal positive in monkeys 1 (n = 2) and 3 (n = 1) months later, respectively. Only the third monkey had an injection placed directly into the substantia nigra and 187,308 beta Gal-positive cells were identified in this animal. The injections induced only minor perivascular cuffing and there was no apparent inflammatory response resulting from the lentivirus injections. Double label experiments revealed that between 80 and 87% of the beta Gal-positive cells were neurons. These data indicate that robust transduction of striatal and nigral cells can occur in the nonhuman primate brain for up to 3 months. Studies are now ongoing testing the ability of lentivirus encoding for dopaminergic trophic factors to augment the nigrostriatal system in nonhuman primate models of Parkinson's disease.
Resumo:
Objective: To demonstrate the incidence, time course, predisposing factor and reversibility of neurotoxicity in children with brain tumors treated with high dose busulfan-thiotepa with autologous stem cell transplantation (ASCT) and radiation therapy in our institutional experience.Materials and Methods: We performed a retrospective analysis of prospectively collected data. Between May 1988 and May 2007, 110 patients, median age 3.6 years (range, 1 months-15.3 years), with brain tumors were treated with surgical intervention and conventional chemotherapy. All patients received one course of high-dose busulfan-thiotepa with stem cell rescue, followed or preceded by radiotherapy.Results: Twenty-three patients (21%) developed neuroradiological abnormalities on follow-up imaging studies at a median time of 9.2 months (range, 5.6-17.3 months) after day 0 of ASCT. All MRI-lesions appeared in patients receiving radiotherapy after ASCT and were localized inside the 50-55 Gy isodoses. They disappeared in 14 of 23 patients with a median time of 8 months (range, 3-17 months). The presence of MRI-abnormalities was a favorable prognostic factor for overall survival on univariate analysis (hazard ratio: 0.12, 95% confidence interval [0.04, 0.33]), with a 5-year overall survival in patients with MRI-abnormalities of 84% (95% CI, 62-94), comparedto 27% (95% CI, 19-37) in those without lesions. On multivariate analysis, the presence of MRI-abnormalities was an independent prognostic factor for overall survival.Conclusion: MRI-detectable brain abnormalities are common early findings in children treated with high-dose busulfan-thiotepa followed by radiation therapy, and may mimic early tumor recurrence. They are correlated with a better outcome.
Resumo:
BACKGROUND: We aimed to study the incidence and outcome of severe traumatic brain injury (TBI) in Switzerland and to test the feasibility of a large cohort study with case identification in the first 24 hours and 6-month follow-up. METHODS: From January to June 2005, we consecutively enrolled and followed up all persons with severe TBI (Abbreviated Injury Score of the head region >3 and Glasgow Coma Scale <9) in the catchment areas of 3 Swiss medical centres with neurosurgical facilities. The primary outcome was the Extended Glasgow Outcome Scale (GOSE) after 6 months. Secondary outcomes included survival, Functional Independence Mea - sure (FIM), and health-related quality of life (SF-12) at defined time-points up to 6 months after injury. RESULTS: We recruited 101 participants from a source population of about 2.47 million (ie, about 33% of Swiss population). The incidence of severe TBI was 8.2 per 100,000 person-years. The overall case fatality was 70%: 41 of 101 persons (41%) died at the scene of the accident. 23 of 60 hospitalised participants (38%) died within 48 hours, and 31 (53%) within 6 months. In all hospitalised patients, the median GOSE was 1 (range 1-8) after 6 months, and was 6 (2-8) in 6-month survivors. The median total FIM score was 125 (range 18-126); median-SF-12 component mea - sures were 44 (25-55) for the physical scale and 52 (32-65) for the mental scale. CONCLUSIONS: Severe TBI was associated with high case fatality and considerable morbidity in survivors. We demonstrated the feasibility of a multicentre cohort study in Switzerland with the aim of identifying modifiable determinants of outcome and improving current trauma care.
Resumo:
The dose-dependent toxicity of the main psychoactive component of cannabis in brain regions rich in cannabinoid CB1 receptors is well known in animal studies. However, research in humans does not show common findings across studies regarding the brain regions that are affected after long-term exposure to cannabis. In the present study, we investigate (using Voxel-based Morphometry) gray matter changes in a group of regular cannabis smokers in comparison with a group of occasional smokers matched by the years of cannabis use. We provide evidence that regular cannabis use is associated with gray matter volume reduction in the medial temporal cortex, temporal pole, parahippocampal gyrus, insula, and orbitofrontal cortex; these regions are rich in cannabinoid CB1 receptors and functionally associated with motivational, emotional, and affective processing. Furthermore, these changes correlate with the frequency of cannabis use in the 3 months before inclusion in the study. The age of onset of drug use also influences the magnitude of these changes. Significant gray matter volume reduction could result either from heavy consumption unrelated to the age of onset or instead from recreational cannabis use initiated at an adolescent age. In contrast, the larger gray matter volume detected in the cerebellum of regular smokers without any correlation with the monthly consumption of cannabis may be related to developmental (ontogenic) processes that occur in adolescence.
Resumo:
Fragile X-associated tremor/ataxia syndrome (FXTAS), a late-onset movement disorder affecting FMR1 premutation carriers, is associated with cerebral and cerebellar lesions. The aim of this study was to test whether computational anatomy can detect similar patterns in asymptomatic FMR1 premutation carriers (mean age 46.7 years) with qualitatively normal -appearing grey and white matter on brain MRI. We used a multimodal imaging protocol to characterize brain anatomy by automated assessment of gray matter volume and white matter properties. Structural changes in the hippocampus and in the cerebellar motor network with decreased gray matter volume in lobule VI and white matter alterations of the corresponding afferent projections through the middle cerebellar peduncles are demonstrated. Diffuse subcortical white matter changes in both hemispheres, without corresponding gray matter alterations, are only identified through age × group interactions. We interpret the hippocampal fimbria and cerebellar changes as early alterations with a possible neurodevelopmental origin. In contrast, progression of the diffuse cerebral hemispheric white matter changes suggests a neurodegenerative process, leading to late-onset lesions, which may mark the imminent onset of FXTAS.
Resumo:
A panel of monoclonal antibodies specific of alpha-tubulin (TU-01, TU-09) and beta-tubulin (TU-06, TU-13) subunits was used to study the location of N-terminal structural domains of tubulin in adult mouse brain. The specificity of antibodies was confirmed b immunoblotting experiments. Immunohistochemical staining of vibratome sections from cerebral cortex, cerebellum, hippocampus, and corpus callosum showed that antibodies TU-01, TU-09, and TU-13 reacted with neuronal and glial cells and their processes, whereas the TU-06 antibody stained only the perikarya. Dendrites and axons were either unstained or their staining was very weak. As the TU-06 epitope is located on the N-terminal structural domain of beta-tubulin, the observed staining pattern cannot be interpreted as evidence of a distinct subcellular localization of beta-tubulin isotypes or known post-translational modifications. The limited distribution of the epitope could, rather, reflect differences between the conformations of tubulin molecules in microtubules of somata and neurites or, alternatively, a specific masking of the corresponding region on the N-terminal domain of beta-tubulin by interacting protein(s) in dendrites and axons.
Resumo:
The 22q11.2 deletion syndrome (22q11DS) is a widely recognized genetic model allowing the study of neuroanatomical biomarkers that underlie the risk for developing schizophrenia. Recent advances in magnetic resonance image analyses enable the examination of structural connectivity integrity, scarcely used in the 22q11DS field. This framework potentially provides evidence for the disconnectivity hypothesis of schizophrenia in this high-risk population. In the present study, we quantify the whole brain white matter connections in 22q11DS using deterministic tractography. Diffusion Tensor Imaging was acquired in 30 affected patients and 30 age- and gender-matched healthy participants. The Human Connectome technique was applied to register white matter streamlines with cortical anatomy. The number of fibers (streamlines) was used as a measure of connectivity for comparison between groups at the global, lobar and regional level. All statistics were corrected for age and gender. Results showed a 10% reduction of the total number of fibers in patients compared to controls. After correcting for this global reduction, preserved connectivity was found within the right frontal and right parietal lobes. The relative increase in the number of fibers was located mainly in the right hemisphere. Conversely, an excessive reduction of connectivity was observed within and between limbic structures. Finally, a disproportionate reduction was shown at the level of fibers connecting the left fronto-temporal regions. We could therefore speculate that the observed disruption to fronto-temporal connectivity in individuals at risk of schizophrenia implies that fronto-temporal disconnectivity, frequently implicated in the pathogenesis of schizophrenia, could precede the onset of symptoms and, as such, constitutes a biomarker of the vulnerability to develop psychosis. On the contrary, connectivity alterations in the limbic lobe play a role in a wide range of psychiatric disorders and therefore seem to be less specific in defining schizophrenia.
Resumo:
Although glycogen (Glyc) is the main carbohydrate storage component, the role of Glyc in the brain during prolonged wakefulness is not clear. The aim of this study was to determine brain Glyc concentration ([]) and turnover time (tau) in euglycemic conscious and undisturbed rats, compared to rats maintained awake for 5h. To measure the metabolism of [1-(13)C]-labeled Glc into Glyc, 23 rats received a [1-(13)C]-labeled Glc solution as drink (10% weight per volume in tap water) ad libitum as their sole source of exogenous carbon for a "labeling period" of either 5h (n=13), 24h (n=5) or 48 h (n=5). Six of the rats labeled for 5h were continuously maintained awake by acoustic, tactile and olfactory stimuli during the labeling period, which resulted in slightly elevated corticosterone levels. Brain [Glyc] measured biochemically after focused microwave fixation in the rats maintained awake (3.9+/-0.2 micromol/g, n=6) was not significantly different from that of the control group (4.0+/-0.1 micromol/g, n=7; t-test, P>0.5). To account for potential variations in plasma Glc isotopic enrichment (IE), Glyc IE was normalized by N-acetyl-aspartate (NAA) IE. A simple mathematical model was developed to derive brain Glyc turnover time as 5.3h with a fit error of 3.2h and NAA turnover time as 15.6h with a fit error of 6.5h, in the control rats. A faster tau(Glyc) (2.9h with a fit error of 1.2h) was estimated in the rats maintained awake for 5h. In conclusion, 5h of prolonged wakefulness mainly activates glycogen metabolism, but has minimal effect on brain [Glyc].