906 resultados para Boundary Element Method


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Odontologia Restauradora - ICT

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective: the aim of this study was to evaluate the influence of occlusal veneering material in single fixed implant-supported crowns through the 3-D finite element method. Material and methods: Four models were fabricated using the Rhinoceros 4.0, SolidWorks, and InVesalius softwares. Each model represented a block of mandibular bone with an external hexagon implant of 5 mm x 10 mm and different veneering materials including NiCr (1), porcelain (2), composite resin (3), and acrylic resin (4). An axial load of 200 N and an oblique load of 100 N were applied. Results: model (2) with porcelain veneering presented a lower stress concentration for the NiCr framework, followed by the composite resin and acrylic resin. The stress distribution to the implant and bone tissue was similar for all models. Conclusions: there is no difference of stress distribution to the implant and supporting structures by varying the veneering material of a single implant-supported prosthesis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective: the aim of this study was to evaluate the influence of occlusal veneering material in single fixed implant-supported crowns through the 3-D finite element method. Material and methods: Four models were fabricated using the Rhinoceros 4.0, SolidWorks, and InVesalius softwares. Each model represented a block of mandibular bone with an external hexagon implant of 5 mm x 10 mm and different veneering materials including NiCr (1), porcelain (2), composite resin (3), and acrylic resin (4). An axial load of 200 N and an oblique load of 100 N were applied. Results: model (2) with porcelain veneering presented a lower stress concentration for the NiCr framework, followed by the composite resin and acrylic resin. The stress distribution to the implant and bone tissue was similar for all models. Conclusions: there is no difference of stress distribution to the implant and supporting structures by varying the veneering material of a single implant-supported prosthesis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One of the greatest problems found in machining is related to the cutting tool wear. A way for increasing the tool life points out to the development of materials more resistant to wear, such as PCBN inserts. However, the unit cost of these tools is considerable high, around 10 to 20 times compared to coated carbide insert, besides its better performance occurs in high speeds requiring modern machine tools. Another way, less studied is the workpiece heating in order to diminish the shear stress material and thus reduce the machining forces allowing an increase of tool life. For understanding the heat transfer influences by conduction in this machining process, a mathematical model was developed to allow a simplified numerical simulation, using the finite element method, in order to determine the temperature profiles inside the workpiece.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The common practice in industry is to perform flutter analyses considering the generalized stiffness and mass matrices obtained from finite element method (FEM) and aerodynamic generalized force matrices obtained from a panel method, as the doublet lattice method. These analyses are often reperformed if significant differences are found in structural frequencies and damping ratios determined from ground vibration tests compared to FEM. This unavoidable rework can result in a lengthy and costly process of analysis during the aircraft development. In this context, this paper presents an approach to perform flutter analysis including uncertainties in natural frequencies and damping ratios. The main goal is to assure the nominal system’s stability considering these modal parameters varying in a limited range. The aeroelastic system is written as an affine parameter model and the robust stability is verified solving a Lyapunov function through linear matrix inequalities and convex optimization

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Ciências Odontológicas - FOAR

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The numeric simulation is an important tool applied in understanding the dynamics of groundwater flow. In a hydrogeological model the processes responsible for groundwater flow are described by numerical formulations that allow the simplification, representation and understanding of the dynamics of the Aquifer System. In this work, a steady state groundwater flow simulation of Urucuia Aquifer System (UAS) part of the Corrente river basin was conducted, using the finite element method through software FEFLOW, to understand the dynamics of groundwater flow and quantify the hydrologic balance. The aquifer system Urucuia lodges in the São Francisco hydrogeological province and corresponds to a set of interconnected aquifers that occur in rocks from Urucuia group in the Urucuia sub-basin described by Campos e Dardenne (1997). The system is a porous media one, in a shape of a thick table mountain, consisting essentially of sandstones. The Corrente river basin is located in UAS in Western State of Bahia and it's one of the main units to maintaining permanent flow (Q95) and average natural flow of the São Francisco river. The simulation performed in this work obtained the following results for the modelled region: horizontal hydraulic conductivity of 3 x 10-4 m/s and vertical one 6 x 10-5 m/s; maximum recharge of 345 mm and minimum of 85 mm/a. It was concluded that: (1) regional groundwater flow has eastbound; with an exception of the extreme northeast portion, where the flow has opposite direction; (2) there are smaller water side dividers with an approximate direction EW, that guide the flow of water to the drainage that cut the aquifer; and (3) the UAS at Corrente river basin can be understood as a free regional aquifer system, isotropic and homogeneous. Regionally, the small lithological variations present in the Urucuia group can be neglected and do not exhibit significant influences on the dynamics of ground water flow