977 resultados para Bone composition
Resumo:
One of the desired properties for any new biomaterial composition is its long-term stability in a suitable animal model and such property cannot be appropriately assessed by performing short-term implantation studies. While hydroxyapatite (HA) or bioglass coated metallic biomaterials are being investigated for in vivo biocompatibility properties, such study is not extensively being pursued for bulk glass ceramics. In view of their inherent brittle nature, the implant stability as well as impact of long-term release of metallic ions on bone regeneration have been a major concern. In this perspective, the present article reports the results of the in vivo implantation experiments carried out using 100% strontium (Sr)-substituted glass ceramics with the nominal composition of 4.5 SiO2-3Al(2)O(3)-1.5P(2)O(5)-3SrO-2SrF(2) for 26 weeks in cylindrical bone defects in rabbit model. The combination of histological and micro-computed tomography analysis provided a qualitative and quantitative understanding of the bone regeneration around the glass ceramic implants in comparison to the highly bioactive HA bioglass implants (control). The sequential polychrome labeling of bone during in vivo osseointegration using three fluorochromes followed by fluorescence microscopy observation confirmed homogeneous bone formation around the test implants. The results of the present study unequivocally confirm the long-term implant stability as well as osteoconductive property of 100% Sr-substituted glass ceramics, which is comparable to that of a known bioactive implant, that is, HA-based bioglass. (c) 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 103B: 1168-1179, 2015.
Resumo:
This work presents a detailed experimental and numerical investigation of the effect of H-2/CO composition on extinction characteristics of premixed and nonpremixed syngas flames. Experimental measurements of local and global extinction strain rates in counterflow diffusion flames have been reported at atmospheric pressure for six different compositions of syngas fuel. The concentration of H-2 was varied from 5 to 20% with a 3% increment, and correspondingly, CO was decreased from 35 to 20% in steps of 3%. Particle imaging velocimetry has been used to determine the local extinction strain rates. Local extinction strain rates increased with an increase in the H-2/CO ratio in both nonpremixed and premixed flames. The predicted extinction strain rates for both nonpremixed and premixed counterflow flames using five different mechanisms available in the literature were compared with measurements. The Davis H-2/CO and Ranzi H-2/CO mechanisms predicted extinction strain rates within 10% of experimental values irrespective of the H-2/CO ratio. In the nonpremixed case, the Cl mechanism by Li et al., GRI 3.0, and the Ranzi H-2/CO mechanism predicted extinction strain rates well for low H-2/CO ratios (from 5:35 to 14:26) but deviated from experiments for higher H-2/CO values (17:23 and 20:20). In addition to kinetics, preferential diffusion effects were found to affect the reaction zone significantly and create distinct localized reaction zone structures in nonpremixed flames, which could contribute to discrepancies in extinction predictions.
Resumo:
In the present paper, we present the structure and composition of tropical evergreen and deciduous forests in the Western Ghats monitored under a long-term programme involving Indian Institute of Science, Earthwatch and volunteer investigators from HSBC. Currently, there is limited evidence on the status and dynamics of tropical forests in the context of human disturbance and climate change. Observations made in this study show that the `more disturbed' evergreen and one of the deciduous plots have low species diversity compared to the less-disturbed forests. There are also variations in the size class structure in the more and `less disturbed' forests of all the locations. The variation is particularly noticeable in the DBH size class 10 - 15 cm category. When biomass stock estimates are considered, there was no significant difference between evergreen and deciduous forests. The difference in biomass stocks between `less disturbed' and `more disturbed' forests within a forest type is also low. Thus, the biomass and carbon stock has not been impacted despite the dependence of communities on the forests. Periodic and long-term monitoring of the status and dynamics of the forests is necessary in the context of potential increased human pressure and climate change. There is, therefore, a need to inform the communities of the impact of extraction and its effect on regeneration so as to motivate them to adopt what may be termed as ``adaptive resource management'', so as to sustain the flow of forest products.
Resumo:
The influences of physical stimuli such as surface elasticity, topography, and chemistry over mesenchymal stem cell proliferation and differentiation are well investigated. In this context, a fundamentally different approach was adopted, and we have demonstrated the interplay of inherent substrate conductivity, defined chemical composition of cellular microenvironment, and intermittent delivery of electric pulses to drive mesenchymal stem cell differentiation toward osteogenesis. For this, conducting polyaniline (PANI) substrates were coated with collagen type 1 (Coll) alone or in association with sulfated hyaluronan (sHya) to form artificial extracellular matrix (aECM), which mimics the native microenvironment of bone tissue. Further, bone marrow derived human mesenchymal stem cells (hMSCs) were cultured on these moderately conductive (10(-4)10(-3) S/cm) aECM coated PANI substrates and exposed intermittently to pulsed electric field (PEF) generated through transformer-like coupling (TLC) approach over 28 days. On the basis of critical analysis over an array of end points, it was inferred that Coll/sHya coated PANI (PANI/Coll/sHya) substrates had enhanced proliferative capacity of hMSCs up to 28 days in culture, even in the absence of PEF stimulation. On the contrary, the adopted PEF stimulation protocol (7 ms rectangular pulses, 3.6 mV/cm, 10 Hz) is shown to enhance osteogenic differentiation potential of hMSCs. Additionally, PEF stimulated hMSCs had also displayed different morphological characteristics as their nonstimulated counterparts. Concomitantly, earlier onset of ALP activity was also observed on PANI/Coll/sHya substrates and resulted in more calcium deposition. Moreover, real-time polymerase chain reaction results indicated higher mRNA levels of alkaline phosphatase and osteocalcin, whereas the expression of other osteogenic markers such as Runt-related transcription factor 2, Col1A, and osteopontin exhibited a dynamic pattern similar to control cells that are cultured in osteogenic medium. Taken together, our experimental results illustrate the interplay of multiple parameters such as substrate conductivity, electric field stimulation, and aECM coating on the modulation of hMSC proliferation and differentiation in vitro.
Resumo:
Photoacoustic (PA) imaging of interphalangeal peripheral joints is of interest in the context of using the synovial membrane as a surrogate marker of rheumatoid arthritis. Previous work has shown that ultrasound (US) produced by absorption of light at the epidermis reflects on the bone surfaces within the finger. When the reflected signals are backprojected in the region of interest, artifacts are produced, confounding interpretation of the images. In this work, we present an approach where the PA signals known to originate from the epidermis are treated as virtual US transmitters, and a separate reconstruction is performed as in US reflection imaging. This allows us to identify the bone surfaces. Furthermore, the identification of the joint space is important as this provides a landmark to localize a region-of-interest in seeking the inflamed synovial membrane. The ability to delineate bone surfaces allows us to identify not only the artifacts but also the interphalangeal joint space without recourse to new US hardware or a new measurement. We test the approach on phantoms and on a healthy human finger.
Resumo:
Sea level rise (SLR) is a primary factor responsible for inundation of low-lying coastal regions across the world, which in turn governs the agricultural productivity. In this study, rice (Oryza sativa L.) cultivated seasonally in the Kuttanad Wetland, a SLR prone region on the southwest coast of India, were analysed for oxygen, hydrogen and carbon isotopic ratios (delta O-18, delta H-2 and delta C-13) to distinguish the seasonal environmental conditions prevalent during rice cultivation. The region receives high rainfall during the wet season which promotes large supply of fresh water to the local water bodies via the rivers. In contrast, during the dry season reduced river discharge favours sea water incursion which adversely affects the rice cultivation. The water for rice cultivation is derived from regional water bodies that are characterised by seasonal salinity variation which co-varies with the delta O-18 and delta H-2 values. Rice cultivated during the wet and the dry season bears the isotopic imprints of this water. We explored the utility of a mechanistic model to quantify the contribution of two prominent factors, namely relative humidity and source water composition in governing the seasonal variation in oxygen isotopic composition of rice grain OM. delta C-13 values of rice grain OM were used to deduce the stress level by estimating the intrinsic water use efficiency (WUEi) of the crop during the two seasons. 1.3 times higher WUE, was exhibited by the same genotype during the dry season. The approach can be extended to other low lying coastal agro-ecosystems to infer the growth conditions of cultivated crops and can further be utilised for retrieving paleo-environmental information from well preserved archaeological plant remains. (c) 2015 Elsevier Ltd. All rights reserved.
Resumo:
A metastable nano-scale disordered precipitate with orthorhombic symmetry has been identified using high resolution scanning transmission electron microscopy. The phase, termed O', is metastable, formed by a shuffle mechanism involving a {110}<1<(1)over bar>0> transverse phonon wave in samples of Ti-26Nb-2Zr (at.%) quenched from the beta phase. The addition of 2% Zr to Ti-26Nb appears to suppress significantly the stability of both the {11 (2) over bar}<111> shear and 2/3 <111> longitudinal phonon wave but promotes the {110}<1<(1)over bar>0> transverse shuffle. This results in the nano-size O' phase being homogeneously formed in the parent beta phase matrix rather than the massive alpha `' phase. (C) 2016 Elsevier B.V. All rights reserved.
Resumo:
Toward preparing strong multi-biofunctional materials, poly(ethylenimine) (PEI) conjugated graphene oxide (GO_PEI) was synthesized using poly(acrylic acid) (PAA) as a spacer and incorporated in poly( e-caprolactone) (PCL) at different fractions. GO_PEI significantly promoted the proliferation and formation of focal adhesions in human mesenchymal stem cells (hMSCs) on PCL. GO_PEI was highly potent in inducing stem cell osteogenesis leading to near doubling of alkaline phosphatase expression and mineralization over neat PCL with 5% filler content and was approximate to 50% better than GO. Remarkably, 5% GO_ PEI was as potent as soluble osteoinductive factors. Increased adsorption of osteogenic factors due to the amine and oxygen containing functional groups on GO_ PEI augment stem cell differentiation. GO_ PEI was also highly efficient in imparting bactericidal activity with 85% reduction in counts of E. coli colonies compared to neat PCL at 5% filler content and was more than twice as efficient as GO. This may be attributed to the synergistic effect of the sharp edges of the particles along with the presence of the different chemical moieties. Thus, GO_ PEI based polymer composites can be utilized to prepare bioactive resorbable biomaterials as an alternative to using labile biomolecules for fabricating orthopedic devices for fracture fixation and tissue engineering.
Resumo:
The distribution of cortical bone in the proximal femur is believed to be a critical component in determining fracture resistance. Current CT technology is limited in its ability to measure cortical thickness, especially in the sub-millimetre range which lies within the point spread function of today's clinical scanners. In this paper, we present a novel technique that is capable of producing unbiased thickness estimates down to 0.3mm. The technique relies on a mathematical model of the anatomy and the imaging system, which is fitted to the data at a large number of sites around the proximal femur, producing around 17,000 independent thickness estimates per specimen. In a series of experiments on 16 cadaveric femurs, estimation errors were measured as -0.01+/-0.58mm (mean+/-1std.dev.) for cortical thicknesses in the range 0.3-4mm. This compares with 0.25+/-0.69mm for simple thresholding and 0.90+/-0.92mm for a variant of the 50% relative threshold method. In the clinically relevant sub-millimetre range, thresholding increasingly fails to detect the cortex at all, whereas the new technique continues to perform well. The many cortical thickness estimates can be displayed as a colour map painted onto the femoral surface. Computation of the surfaces and colour maps is largely automatic, requiring around 15min on a modest laptop computer.
Resumo:
Fracture appearance, surface and nanomechanics properties of antibacterial ceramics contairing rare earth phosphate composite antibacterial materials were characterized and measured by SEM, AFM and Nanoindenter, respectively. Results show that grain of fracture surface of antibacterial ceramics grows uniform refinement topography of bubble break-up appears at the surface, which is flat and has liquid character, by adding the phosphate composite containing rare earth, nevertheless needle-like crystal and granular outgrowth form at fracture surface and surface of common ceramics, respectively. Young's modulus of antibacterial ceramic film is 74. 397 GPa and hardness is 8. 134 GPa, which increses by 4.4﹪ and 1.6﹪ comparing with common ceramics, respectively. Loading curves of two kind of ceramics have obvious nonlinear character under 700 nm and linear character between 700 ~ 1000 nm, and unloading curve have obvious linear character.
Resumo:
We have recently developed image processing techniques for measuring the cortical thicknesses of skeletal structures in vivo, with resolution surpassing that of the underlying computed tomography system. The resulting thickness maps can be analysed across cohorts by statistical parametric mapping. Applying these methods to the proximal femurs of osteoporotic women, we discover targeted and apparently synergistic effects of pharmaceutical osteoporosis therapy and habitual mechanical load in enhancing bone thickness. © 2011 Poole et al.
Resumo:
This paper presents models to describe the dislocation dynamics of strain relaxation in an epitaxial uniform layer, epitaxial multilayers and graded composition buffers. A set of new evolution equations for nucleation rate and annihilation rate of threading dislocations is developed. The dislocation interactions are incorporated into the kinetics process by introducing a resistance term, which depends only on plastic strain. Both threading dislocation nucleation and threading dislocation annihilation are characterized. The new evolution equations combined with other evolution equations for the plastic strain rate, the mean velocity and the dislocation density rate of the threading dislocations are tested on GexSi1-x/Si(100) heterostructures, including epitaxial multilayers and graded composition buffers. It is shown that the evolution equations successfully predict a wide range of experimental results of strain relaxation and threading dislocation evolution in the materials system. Meanwhile, the simulation results clearly signify that the threading dislocation annihilation plays a vital role in the reduction of threading dislocation density.