999 resultados para Bone ash
Resumo:
The synthesis and photophysical evaluation of a new lanthanide luminescence imaging agent is presented. The agent, a terbium-based cyclen complex can, through the use of an iminodiacetate moiety, bind to damaged bone surface via chelation to exposed Ca(II) sites, enabling the imaging of the damage using confocal fluorescence scanning microscopy.
Resumo:
The ash cloud resulting from the 2010 eruption of Eyjafjöll caused severe disruption to air travel across Europe but as a geological event, it is not unprecedented. Analysis of peat and lake sediments from northern Europe has revealed the presence of microscopic layers of Icelandic volcanic ash (tephra). These sedimentary records, together with historical records of Holocene ash falls, demonstrate that Icelandic volcanoes have generated substantial ash clouds that reached northern Europe many times. Here we present the first comprehensive compilation of sedimentary and historical records of ash-fall events in northern Europe, spanning the last 7000 years. Within this period ten tephra layers have been identified in the Faroe Islands, 14 in Great Britain, 11 in Germany, 38 in Scandinavia and 33 in Ireland. Seven ash fall events have been historically documented prior to the Eyjafjöll 2010 event. Ash fall events appear to be more frequent in the last 1500 years, but it is unclear whether this reflects a true increase in eruption frequency or dispersal, or is an artefact of the records themselves or the way they have been generated. In the last 1,000 years, volcanic ash clouds reached Northern Europe with a mean return interval of 53 ± 8 years (the range of return intervals is between 6 and 112 years). Modelling using the ash records for the last millennium indicates that for any 10 year period there is a 17% probability of tephra fallout event in Northern Europe. These values must be considered as conservative estimates due to the nature of tephra capture and preservation in the sedimentary record.
Resumo:
Residual stress due to shrinkage of polymethylmethacrylate bone cement after polymerisation is possibly one factor capable of initiating cracks in the mantle of cemented hip replacements. No relationship between residual stress and observed cracking of cement has yet been demonstrated. To investigate if any relationship exists, a physical model has been developed which allows direct observation of damage in the cement layer on the femoral side of total hip replacement. The model contains medial and lateral cement layers between a bony surface and a metal stem; the tubular nature of the cement mantle is ignored. Five specimens were prepared and examined for cracking using manual tracing of stained cracks, observed by transmission microscopy: cracks were located and measured using image analysis. A mathematical approach for the prediction of residual stress due to shrinkage was developed which uses the thermal history of the material to predict when stress-locking occurs, and estimates subsequent thermal stress. The residual stress distribution of the cement layer in the physical model was then calculated using finite element analysis. Results show maximum tensile stresses normal to the observed crack directions, suggesting a link between residual stress and preload cracking. The residual stress predicted depends strongly on the definition of the reference temperature for stress-locking. The highest residual stresses (4-7 MPa) are predicted for shrinkage from maximum temperature, in this case, magnitudes are sufficiently high to initiate cracks when the influence of stress raisers such as pores or interdigitation at the bone/cement interface are taken into account (up to 24 MPa when calculating stress around a pore according to the method of Harrigan and Harris (J. Biomech. 24(11) (1991) 1047-1058)). We conclude that the damage accumulation failure scenario begins before weight-bearing due to cracking induced by residual stress around pores or stress raisers. (C) 2002 Elsevier Science Ltd. All rights reserved.