966 resultados para Bone Mass


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first step in bone healing is forming a blood clot at injured bones. During bone implantation, biomaterials unavoidably come into direct contact with blood, leading to a blood clot formation on its surface prior to bone regeneration. Despite both situations being similar in forming a blood clot at the defect site, most research in bone tissue engineering virtually ignores the important role of a blood clot in supporting healing. Dental implantology has long demonstrated that the fibrin structure and cellular content of a peri-implant clot can greatly affect osteoconduction and de novo bone formation on implant surfaces. This paper reviews the formation of a blood clot during bone healing in related to the use of platelet-rich plasma (PRP) gels. It is implicated that PRP gels are dramatically altered from a normal clot in healing, resulting conflicting effect on bone regeneration. These results indicate that the effect of clots on bone regeneration depends on how the clots are formed. Factors that influence blood clot structure and properties in related to bone healing are also highlighted. Such knowledge is essential for developing strategies to optimally control blood clot formation, which ultimately alter the healing microenvironment of bone. Of particular interest are modification of surface chemistry of biomaterials, which displays functional groups at varied composition for the purpose of tailoring blood coagulation activation, resultant clot fibrin architecture, rigidity, susceptibility to lysis, and growth factor release. This opens new scope of in situ blood clot modification as a promising approach in accelerating and controlling bone regeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Androgen-dependent prostate cancer (PrCa) xenograft models are required to study PrCa biology in the clinically relevant in vivo environment. METHODS Human PrCa tissue from a femoral bone metastasis biopsy (BM18) was grown and passaged subcutaneously through male severe combined immune-deficient (SCID) mice. Human mitochondria (hMt), prostate specific antigen (PSA), androgen receptor (AR), cytokeratin-18 (CK-18), pan-cytokeratin, and high molecular weight-cytokeratin (HMW-CK) were assessed using immunohistochemistry (IHC). Surgical castration was performed to examine androgen dependence. Serum was collected pre- and post-castration for monitoring of PSA levels. RESULTS: BM18 stained positively for hMt, PSA, AR, CK-18, pan keratin, and negatively for HMW-CK, consistent with the staining observed in the original patient material. Androgen-deprivation induced tumor regression in 10/10 castrated male SCID mice. Serum PSA levels positively correlated with BM18 tumor size. CONCLUSIONS BM18 expresses PSA and AR, and rapidly regresses in response to androgen withdrawal. This provides a new clinically significant PrCa model for the study of androgen-dependent growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone sialoprotein (BSP) and osteopontin (OPN) are secreted glycoproteins with a conserved Arg-Gly-Asp (RGD) integrin-binding motif and are expressed predominantly in bone. The RGD tripeptide is commonly present in extracellular attachment proteins and has been shown to mediate the attachment of osteosarcoma cells and osteoclasts. To determine the origin and incidence of BSP and OPN mRNA expression in primary tumor, a cohort of archival, primary invasive breast carcinoma specimens was analyzed. BSP transcripts were detected in 65% and OPN transcripts in 77% of breast cancers examined. In general, BSP and OPN transcripts were detected in both invasive and in situ carcinoma components. The transcripts were not detected in surrounding stromal cells or in peritumoral macrophages. Despite its abundance in carcinomas, BSP expression was not detected in a panel of 11 human breast cancer cell lines (MCF-7, T47D, SK-Br-3, MDA-MB-453, MDA-MB- 231, MDA-MB-436, BT549, MCF-7(AOR), Hs578T, MDA-MB-435, and LCC15-MB) and OPN expression was detected only in two of these (MDA-MB-435 and LCC15-MB). To examine the possibility that expression of these genes was down-regulated in cell culture, several cell lines were grown as nude mouse xenografts in vivo; however, these tumors also failed to express BSP. OPN expression was identified in all cell lines grown as nude mouse xenografts. Our data suggest that in human primary breast tumors, the origin of BSP and OPN mRNA is predominantly the breast cancer cells and that expression of these transcripts is influenced by the tumor environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article explores the relationship between the Responsibility to Protect (R2P) and the pursuit of the so-called ‘Women, Peace and Security’ (WPS) agenda at the UN. We ask whether the two agendas should continue to be pursued separately or whether each can make a useful contribution to the other. We argue that while the history of R2P has not included language that deliberately evokes the protection of women and the promotion of gender in preventing genocide and mass atrocities, this does not preclude the R2P and WPS agendas becoming mutually reinforcing. The article identifies cross-cutting areas where the two agendas may be leveraged for the UN and member states to address the concerns of women as both actors in need of protection and active agents in preventing and responding to genocide and mass atrocities, namely in the areas of early warning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel nanostructures such as vertically aligned carbon nanotube (CNT) arrays have received increasing interest as drug delivery carriers. In the present study, two CNT arrays with extreme surface wettabilities are fabricated and their effects on the release of recombinant human bone morphogenetic protein-2 (rhBMP-2) are investigated. It is found that the superhydrophilic arrays retained a larger amount of rhBMP-2 than the superhydrophobic ones. Further use of a poloxamer diffusion layer delayed the initial burst and resulted in a greater total amount of rhBMP-2 released from both surfaces. In addition, rhBMP-2 bound to the superhydrophilic CNT arrays remained bioactive while they denatured on the superhydrophobic surfaces. These results are related to the combined effects of rhBMP-2 molecules interacting with poloxamer and the surface, which could be essential in the development of advanced carriers with tailored surface functionalities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hepatocellular carcinoma (HCC) is one of the primary hepatic malignancies and is the third most common cause of cancer related death worldwide. Although a wealth of knowledge has been gained concerning the initiation and progression of HCC over the last half century, efforts to improve our understanding of its pathogenesis at a molecular level are still greatly needed, to enable clinicians to enhance the standards of the current diagnosis and treatment of HCC. In the post-genome era, advanced mass spectrometry driven multi-omics technologies (e.g., profiling of DNA damage adducts, RNA modification profiling, proteomics, and metabolomics) stand at the interface between chemistry and biology, and have yielded valuable outcomes from the study of a diversity of complicated diseases. Particularly, these technologies are being broadly used to dissect various biological aspects of HCC with the purpose of biomarker discovery, interrogating pathogenesis as well as for therapeutic discovery. This proof of knowledge-based critical review aims at exploring the selected applications of those defined omics technologies in the HCC niche with an emphasis on translational applications driven by advanced mass spectrometry, toward the specific clinical use for HCC patients. This approach will enable the biomedical community, through both basic research and the clinical sciences, to enhance the applicability of mass spectrometry-based omics technologies in dissecting the pathogenesis of HCC and could lead to novel therapeutic discoveries for HCC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents Australian results from the Interests and Recruitment in Science (IRIS) study with respect to the influence of STEM-related mass media, including science fiction, on students’ decisions to enrol in university STEM courses. The study found that across the full cohort (N=2999), students tended to attribute far greater influence to science-related documentaries/channels such as Life on Earth and the Discovery Channel, etc. than to science-fiction movies or STEM-related TV dramas. Males were more inclined than females to consider science fiction/fantasy books and films and popular science books/magazines as having been important in their decisions. Students taking physics/astronomy tended to rate the importance of science fiction/fantasy books and films higher than students in other courses. The implications of these results for our understanding of influences on STEM enrolments are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SUMMARY: Recently, the use of the pharmacological agent strontium ranelate has come to prominence for the treatment of osteoporosis. While much investigation is focused on preventing disease progression, here we fabricate strontium-containing scaffolds and show that they enhance bone defect healing in the femurs of rats induced by ovariectomy. INTRODUCTION: Recently, the use of the pharmacological agent strontium ranelate has come to prominence for the treatment of osteoporosis due to its ability to prevent bone loss in osteoporotic patients. Although much emphasis has been placed on using pharmacological agents for the prevention of disease, much less attention has been placed on the construction of biomaterials following osteoporotic-related fracture. The aim of the present study was to incorporate bioactive strontium (Sr) trace element into mesoporous bioactive glass (MBG) scaffolds and to investigate their in vivo efficacy for bone defect healing in the femurs of rats induced by ovariectomy. METHODS: In total, 30 animals were divided into five groups as follows: (1) empty defect (control), (2) empty defects with estrogen replacement therapy, (3) defects filled with MBG scaffolds alone, (4) defects filled with MBG + estrogen replacement therapy, and (5) defects filled with strontium-incorporated mesopore-bioglass (Sr-MBG) scaffolds. RESULTS: The two groups demonstrating the highest levels of new bone formation were the defects treated with MBG + estrogen replacement therapy and the defects receiving Sr-MBG scaffolds as assessed by μ-CT and histological analysis. Furthermore, Sr scaffolds had a reduced number of tartrate-resistant acid phosphatase-positive cells when compared to other modalities. CONCLUSION: The results from the present study demonstrate that the local release of Sr from bone scaffolds may improve fracture repair. Future large animal models are necessary to investigate the future relationship of Sr incorporation into biomaterials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Indians tend to have lower lean body mass than other ethnic groups which increases the risk of chronic diseases. Three complementary studies included in this thesis advanced knowledge on determinants of lean body mass in Indians and the techniques to measure it. The first study examined the determinants of lean body mass in young Indian adults and highlighted the importance of diet and physical activity for development of lean body mass. This study has important implications for policy on prevention of chronic diseases in India. The other two studies helped refinement of the techniques of lean body mass measurement and are expected to facilitate future research in this area. The thesis is presented in the form of publications in high ranking journals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pulmonary arterial hypertension (PAH) is a progressive disease characterized by lung endothelial dysfunction and vascular remodeling. Recently, bone marrow progenitor cells have been localized to PAH lungs, raising the question of their role in disease progression. Independently, serotonin (5-HT) and its receptors have been identified as contributors to the PAH pathogenesis. We hypothesized that 1 of these receptors, 5-HT(2B), is involved in bone marrow stem cell mobilization that participates in the development of PAH and pulmonary vascular remodeling. A first study revealed expression of 5-HT(2B) receptors by circulating c-kit(+) precursor cells, whereas mice lacking 5-HT(2B) receptors showed alterations in platelets and monocyte-macrophage numbers, and in myeloid lineages of bone marrow. Strikingly, mice with restricted expression of 5-HT(2B) receptors in bone marrow cells developed hypoxia or monocrotaline-induced increase in pulmonary pressure and vascular remodeling, whereas restricted elimination of 5-HT(2B) receptors on bone marrow cells confers a complete resistance. Moreover, ex vivo culture of human CD34(+) or mice c-kit(+) progenitor cells in the presence of a 5-HT(2B) receptor antagonist resulted in altered myeloid differentiation potential. Thus, we demonstrate that activation of 5-HT(2B) receptors on bone marrow lineage progenitors is critical for the development of PAH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis focuses on the development of a humanised mouse model to investigate human breast cancer metastasis to bone, an incurable disease presenting a major medical challenge in our society. The method is based on tissue-engineered constructs with human cells that generate a human bone-like organ within mice. This novel platform is further applied to mimic human-specific mechanisms of breast cancer metastasis and growth in human bone, and in particular the role of specific cell adhesion molecules in this process is closely investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of estrogen deficiency on bone characteristics are site-dependent, with the most commonly studied sites being appendicular long bones (proximal femur and tibia) and axial bones (vertebra). The effect on the maxillary and mandibular bones is still inconsistent and requires further investigation. This study was designed to evaluate bone quality in the posterior maxilla of ovariectomized rats in order to validate this site as an appropriate model to study the effect of osteoporotic changes. Methods: Forty-eight 3-month-old female Sprague-Dawley rats were randomly divided into two groups: an ovariectomized group (OVX, n=24) and Sham-operated group (SHAM, n=24). Six rats were randomly sacrificed from both groups at time points 8, 12, 16 and 20 weeks. The samples from tibia and maxilla were collected for Micro CT and histological analysis. For the maxilla, the volume of interest (VOI) area focused on the furcation areas of the first and second molar. Trabecular bone volume fraction (BV/TV, %), trabecular thickness (Tb.Th.), trabecular number (Tb.N.), trabecular separation (Tb.Sp.), and connectivity density (Conn.Dens) were analysed after Micro CT scanning. Results: At 8 weeks the indices BV/TV, Tb.Sp, Tb.N and Conn.Dens showed significant differences (P<0.05) between the OVX and SHAM groups in the tibia. Compared with the tibia, the maxilla developed osteoporosis at a later stage, with significant changes in maxillary bone density only occurring after 12 weeks. Compared with the SHAM group, both the first and second molars of the OVX group showed significantly decreased BV/TV values from 12 weeks, and these changes were sustained through 16 and 20 weeks. For Tb.Sp, there were significant increases in bone values for the OVX group compared with the SHAM group at 12, 16 and 20 weeks. Histological changes were highly consistent with Micro CT results. Conclusion: This study established a method to quantify the changes of intra-radicular alveolar bone in the posterior maxilla in an accepted rat osteoporosis model. The degree of the osteoporotic changes to trabecular bone architecture is site-dependent and at least 3 months are required for the osteoporotic effects to be apparent in the posterior maxilla following rat OVX.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resection of musculoskeletal sarcoma can result in large bone defects where regeneration is needed in a quantity far beyond the normal potential of self-healing. In many cases, these defects exhibit a limited intrinsic regenerative potential due to an adjuvant therapeutic regimen, seroma, or infection. Therefore, reconstruction of these defects is still one of the most demanding procedures in orthopaedic surgery. The constraints of common treatment strategies have triggered a need for new therapeutic concepts to design and engineer unparalleled structural and functioning bone grafts. To satisfy the need for long-term repair and good clinical outcome, a paradigm shift is needed from methods to replace tissues with inert medical devices to more biological approaches that focus on the repair and reconstruction of tissue structure and function. It is within this context that the field of bone tissue engineering can offer solutions to be implemented into surgical therapy concepts after resection of bone and soft tissue sarcoma. In this paper we will discuss the implementation of tissue engineering concepts into the clinical field of orthopaedic oncology.