929 resultados para Bonding and stereochemistry
Resumo:
An ultrasonic pulse-echo method was used to measure the transit time of longitudinal and transverse (10 MHz) elastic waves in a Nd60Al10Fe20Co10 bulk metallic glass (BMG). The measurements were carried out under hydrostatic pressure up to 0.5 GPa at room temperature. On the basis of experimental data for the sound velocities and density, the elastic moduli and Debye temperature of the BMG were derived as a function of pressure. Murnaghan's equation of state is obtained. The normal behaviour of the positive pressure dependence of the ultrasonic velocities was observed for this glass. Moreover, the compression curve, the elastic constants, and the Debye temperature of the BMG are calculated on the basis of the similarity between their physical properties in the glassy state and those in corresponding crystalline state. These results confirm qualitatively the theoretical predictions concerning the features of the microstructure and interatomic bonding in the Nd60Al10Fe20Co10 BMG.
Resumo:
An immunosensor interface based on mixed hydrophobic self-assembled monolayers (SAMs) of methyl and carboxylic acid terminated thiols with covalently attached human Immunoglobulin G (hIgG), is investigated. The densely packed and organised SAMs were characterised by contact angle measurements and cyclic voltammetry. The effect of the non-ionic surfactant, Tween 20, in preventing nonspecific adsorption is addressed by ellipsometry during physical and covalent hIgG immobilization on pure and mixed SAMs, respectively. It is clearly demonstrated that nonspecific adsorption due to hydrophobic interactions of hIgG on methyl ended groups is totally inhibited, whereas electrostatic/hydrogen bonding interactions with the exposed carboxylic groups prevail in the presence of surfactant. Results of ellipsometry and Atomic Force Microscopy, reveal that the surface concentration of covalently immobilized hIgG is determined by the ratio of COOH/CH3-terminated thiols in SAM forming solution. Moreover, the ellipsometric data demonstrates that the ratio of bound anti-hIgG/hIgG depends on the density of hIgG on the surface and that the highest ratio is close to three. We also report the selectivity and high sensitivity achieved by chronoamperometry in the detection of adsorbed hIgG and the reaction with its antibody.
Resumo:
Anodic bonding of Pyrex glass/Al/Si is an important bonding technique in micro/nanoelectromechanical systems (MEMS/NEMS) industry. The anodic bonding of Pyrex 7740 glass/Aluminum film/Silicon is completed at the temperature from 300 degrees C to 375 degrees C with a bonding voltage between 150 V and 450 V. The fractal patterns are formed in the intermediate Al thin film. This pattern has the fractal dimension of the typical two-dimensional diffusion-limited aggregation (2D DLA) process, and the fractal dimension is around 1.7. The fractal patterns consist of Al and Si crystalline grains, and their occurrences are due to the limited diffusion, aggregation, and crystallization of Si and Al atoms in the intermediate Al layers. The formation of the fractal pattern is helpful to enhance the bonding strength between the Pyrex 7740 glass and the aluminum thin film coated on the crystal silicon substrates.
Resumo:
The bonding of glass wafer to aluminum foils in multi-layer assemblies was made by the common anodic bonding process. The bonding was performed at temperatures in the range 350-450 degrees C and with an applied voltage in the range 400-700 V under a pressure of 0.05 MPa. Residual stress and deformation in samples of two-layer (aluminum/glass) and three-layer (glass/aluminum/glass) were analyzed by nonlinear finite element simulation software MARC. The stress and strain varying with cooling time were obtained. The analyzed results show that deformation of the three-layer sample is significantly smaller than that of the two-layer sample, because of the symmetric structure of the three-layer sample. This has an important advantage in MEMS fabrication. The maximum equivalent stresses locate in the transition layer in both samples, which will become weakness in bonded sample.
Resumo:
Micro anchor is a kind of typical structures in micro/nano electromechanical systems (MEMS/NEMS), and it can be made by anodic bonding process, with thin films of metal or alloy as an intermediate layer. At the relative low temperature and voltage, specimens with actually sized micro anchor structures were anodically bonded using Pyrex 7740 glass and patterned crystalline silicon chips coated with aluminum thin film with a thickness comprised between 50 nm and 230 nm. To evaluate the bonding quality, tensile pulling tests have been finished with newly designed flexible fixtures for these specimens. The experimental results exhibit that the bonding tensile strength increases with the bonding temperature and voltage, but it decreases with the increase of the thickness of Al intermediate layer. This kind of thickness effect of the intermediate layer was not mentioned in the literature on anodic bonding. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Methane hydrate, which is usually found under deep seabed or permafrost zones, is a potential energy resource for future years. Depressurization of horizontal wells bored in methane hydrate layer is considered as one possible method for hydrate dissociation and methane extraction from the hosting soil. Since hydrate is likely to behave as a bonding material to sandy soils, supported well construction is necessary to avoid well-collapse due to the loss of the apparent cohesion during depressurization. This paper describes both physical and numerical modeling of such horizontal support wells. The experimental part involves depressurization of small well models in a large pressure cell, while the numerical part simulates the corresponding problem. While the experiment models simulate only gas saturated initial conditions, the numerical analysis simulates both gas-saturated and more realistic water-saturated conditions based on effective stress coupled flow-deformation formulation of these three phases. © 2006 Taylor & Francis Group.
Resumo:
The microstructures and the characteristics of water-atomized, nitrogen gas-atomized Al powders and ultrasonic argon gas-atomized Al-Li alloy powder were investigated by means of metallography, SEM, Auger electron spectroscopy and X-ray diffraction techniques. Rapidly solidified powders were explosively consolidated into different sized cylinders under various explosive parameters. The explosively consolidated compacts have been tested and analysed for density microhardness, retention of rapidly solidified microstructures, interparticle bonding, fractography and lattice distortion. It is shown that the explosive consolidation technique is an effective method for compacting rapidly solidified powders. The characteristics of surface layers play a very important role in determining the effectiveness of the joints sintered, and the Al-Li alloy explosive compacts present an abnormal softening appearance compared to the original powder.
Resumo:
Peel test measurements and inverse analysis to determine the interfacial mechanical parameters for the metal film/ceramic system are performed, considering that there exist an epoxy interface layer between film and ceramic. In the present investigation, Al films with a series of thicknesses between 20 and 250 mu m and three peel angles of 90, 135 and 180 degrees are considered. A finite element model with the cohesive zone elements is used to simulate the peel test process. The finite element results are taken as the training data of a neural network in the inverse analysis. The interfacial cohesive energy and the separation strength can be determined based on the inverse analysis and peel experimental result. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Carbon nanotubes (CNTs) have been regarded as ideal reinforcements of high-performance composites with enormous applications. However, the waviness of the CNTs and the interfacial bonding condition between them and the matrix are two key factors that influence the reinforcing efficiency. In this paper, the effects of the waviness of the CNTs and the interfacial debonding between them and the matrix on the effective moduli of CNT-reinforced composites are studied. A simple analytical model is presented to investigate the influence of the waviness on the effective moduli. Then, two methods are proposed to examine the influence of the debonding. It is shown that both the waviness and debonding can significantly reduce the stiffening effect of the CNTs. The effective moduli are very sensitive to the waviness when the latter is small, and this sensitivity decreases with the increase of the waviness. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Methodology for the preparation of allenes from propargylic hydrazine precursors under mild conditions is described. Oxidation of the propargylic hydrazines, which can be readily prepared from propargylic alcohols, with either of two azo oxidants, diethyl azodicarboxylate (DEAD) or 4-methyl 1,2-triazoline-3,5-dione (MTAD), effects conversion to the allenes, presumably via sigmatropic rearrangement of a monoalkyl diazene intermediate. This rearrangement is demonstrated to proceed with essentially complete stereospecificity. The application of this methodology to the preparation of other allenes, including two that are notable for their reactivity and thermal instability, is also described.
The structural and mechanistic study of a monoalkyl diazene intermediate in the oxidative transformation of propargylic hydrazines to allenes is described. The use of long-range heteronuclear NMR coupling constants for assigning monoalkyl diazene stereochemistry (E vs Z) is also discussed. Evidence is presented that all known monoalkyl diazenes are the E isomers, and the erroneous assignment of stereochemistry in the previous report of the preparation of (Z)-phenyldiazene is discussed.
The synthesis, characterization, and reactivity of 1,6-didehydro[10]annulene are described. This molecule has been recognized as an interesting synthetic target for over 40 years and represents the intersection of two sets of extensively studied molecules: nonbenzenoid aromatic compounds and molecules containing sterically compressed π-systems.The formation of 1,5-dehydronaphthalene from 1 ,6-didehydro[10]annulene is believed to be the prototype for cycloaromatizations that produce 1,4-dehydroaromatic species with the radical centers disposed anti about the newly formed single bond. The aromaticity of this annulene and the facility of its cycloaromatization are also analyzed.
Resumo:
The work described in this dissertation includes fundamental investigations into three surface processes, namely inorganic film growth, water-induced oxidation, and organic functionalization/passivation, on the GaP and GaAs(001) surfaces. The techniques used to carry out this work include scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) calculations. Atomic structure, electronic structure, reaction mechanisms, and energetics related to these surface processes are discussed at atomic or molecular levels.
First, we investigate epitaxial Zn3P2 films grown on the Ga-rich GaAs(001)(6×6) surface. The film growth mechanism, electronic properties, and atomic structure of the Zn3P2/GaAs(001) system are discussed based on experimental and theoretical observations. We discover that a P-rich amorphous layer covers the crystalline Zn3P2 film during and after growth. We also propose more accurate picture of the GaP interfacial layer between Zn3P2 and GaAs, based on the atomic structure, chemical bonding, band diagram, and P-replacement energetics, than was previously anticipated.
Second, DFT calculations are carried out in order to understand water-induced oxidation mechanisms on the Ga-rich GaP(001)(2×4) surface. Structural and energetic information of every step in the gaseous water-induced GaP oxidation reactions are elucidated at the atomic level in great detail. We explore all reasonable ground states involved in most of the possible adsorption and decomposition pathways. We also investigate structures and energies of the transition states in the first hydrogen dissociation of a water molecule on the (2×4) surface.
Finally, adsorption structures and thermal decomposition reactions of 1-propanethiol on the Ga-rich GaP(001)(2×4) surface are investigated using high resolution STM, XPS, and DFT simulations. We elucidate adsorption locations and their associated atomic structures of a single 1-propanethiol molecule on the (2×4) surface as a function of annealing temperature. DFT calculations are carried out to optimize ground state structures and search transition states. XPS is used to investigate variations of the chemical bonding nature and coverage of the adsorbate species.
Resumo:
Neocarzinostatin chromophore 1 is the active component of the antitumor antibiotic neocarzinostatin (NCS). The chromophore reacts with thiols to form a highly strained cumulene-enyne species which rapidly rearranges to a biradical intermediate which can abstract hydrogen atoms from DNA, leading to strand cleavage. DNA damage is the proposed source of biological activity for NCS. The structure of the methyl thioglycolate monoadduct 2 of NCS chromophore, including the absolute stereochemistry, was determined by NMR studies. The presence of the cumulene-enyne intermediate and the rearrangement to a biradical were supported by data from low temperature NMR investigations. Also included are synthetic approaches to NCS chromophore model compounds based on intramolecular addition of an acetylide to an aldehyde.
Resumo:
I. Trimethylsilylpotassium reacts with epoxides to give olefins with inversion of stereochemistry. The reaction appears to proceed via the potassium β-silyl alkoxide (2) formed from the S_N2 attack of the silyl anion on the epoxide. Subsequent stereospecific synelimination of 2 affords the olefin of inverted stereo-chemistry. The reaction is convenient and preparatively useful.
The byproduct of the reaction, potassium trimethylsilanolate (17), effectively cleaves hexamethyldisilane to yield trimethylsilylpotassium. Since the latter reagent is generated and reacted in situ with epoxides, the overall reaction can be carried out with less than one equivalent of potassium methoxide.
II. The reaction of aryl halides with trimethylsilyl anions in HMPT provides good yields of aryltrimethylsilanes, useful synthetic intermediates. The choice of metal cation is unimportant. Chlorides and bromides give high yields of silylated products, while iodides give lower yields, with correspondingly increased amounts of reduced products. Arylammonium and arylphosphonium salts also undergo the reaction.
We have permissive evidence for the reaction proceeding via both aryl radical and aryl anion intermediates.
III. Trimethylsilyl and trimethylstannyl methoxycarbene complexes of chromium and tungsten have been prepared. One of these, (CO)_5WC(OMe)SnMe_3, reacts with norbornene at 80° to afford a new olefin polymer. Efforts to effect the alpha-elimination of the nonmetallic carbene ligands have not yet been successful. Reactions of these carbene complexes with acetone have been investigated.