977 resultados para Bomberos - Fisiología
Resumo:
Guanylate cyclase activating proteins are EF-hand containing proteins that confer calcium sensitivity to retinal guanylate cyclase at the outer segment discs of photoreceptor cells. By making the rate of cGMP synthesis dependent on the free intracellular calcium levels set by illumination, GCAPs play a fundamental role in the recovery of the light response and light adaptation. The main isoforms GCAP1 and GCAP2 also localize to the synaptic terminal, where their function is not known. Based on the reported interaction of GCAP2 with Ribeye, the major component of synaptic ribbons, it was proposed that GCAP2 could mediate the synaptic ribbon dynamic changes that happen in response to light. We here present a thorough ultrastructural analysis of rod synaptic terminals in loss-of-function (GCAP1/GCAP2 double knockout) and gain-of-function (transgenic overexpression) mouse models of GCAP2. Rod synaptic ribbons in GCAPs−/− mice did not differ from wildtype ribbons when mice were raised in constant darkness, indicating that GCAPs are not required for ribbon early assembly or maturation. Transgenic overexpression of GCAP2 in rods led to a shortening of synaptic ribbons, and to a higher than normal percentage of club-shaped and spherical ribbon morphologies. Restoration of GCAP2 expression in the GCAPs−/− background (GCAP2 expression in the absence of endogenous GCAP1) had the striking result of shortening ribbon length to a much higher degree than overexpression of GCAP2 in the wildtype background, as well as reducing the thickness of the outer plexiform layer without affecting the number of rod photoreceptor cells. These results indicate that preservation of the GCAP1 to GCAP2 relative levels is relevant for maintaining the integrity of the synaptic terminal. Our demonstration of GCAP2 immunolocalization at synaptic ribbons at the ultrastructural level would support a role of GCAPs at mediating the effect of light on morphological remodeling changes of synaptic ribbons.
Resumo:
Purpose. Postnatal exposure to hyperoxia destroys the plexiform layers of the neonatal rat retina, resulting in significant electroretinographic anomalies. The purpose of this study was to identify the mechanisms at the origin of this loss. Methods. Sprague-Dawley (SD) and Long Evans (LE) rats were exposed to hyperoxia from birth to postnatal day (P) 6 or P14 and from P6 to P14, after which rats were euthanatized at P6, P14, or P60. Results. At P60, synaptophysin staining confirmed the lack of functional synaptic terminals in SD (outer plexiform layer [OPL]) and LE (OPL and inner plexiform layer [IPL]) rats. Uneven staining of ON-bipolar cell terminals with mGluR6 suggests that their loss could play a role in OPL thinning. Protein kinase C(PKC)-α and recoverin (rod and cone ON-bipolar cells, respectively) showed a lack of dendritic terminals in the OPL with disorganized axonal projections in the IPL. Although photoreceptor nuclei appeared intact, a decrease in bassoon staining (synaptic ribbon terminals) suggests limited communication to the inner retina. Findings were significantly more pronounced in LE rats. An increase in TUNEL-positive cells was observed in LE (inner nuclear layer [INL] and outer nuclear layer [ONL]) and SD (INL) rats after P0 to P14 exposure (425.3%, 102.2%, and 146.3% greater than control, respectively [P < 0.05]). Conclusions. Results suggest that cell death and synaptic retraction are at the root of OPL thinning. Increased TUNEL-positive cells in the INL confirm that cells die, at least in part, because of apoptosis. These findings propose a previously undescribed mechanism of cell death and synaptic retraction that are likely at the origin of the functional consequences of hyperoxia.
Resumo:
Purpose. To evaluate the preventive effect of tauroursodeoxycholic acid (TUDCA) on photoreceptor degeneration, synaptic connectivity and functional activity of the retina in the transgenic P23H rat, an animal model of autosomal dominant retinitis pigmentosa (RP). Methods. P23H line-3 rats were injected with TUDCA once a week from postnatal day (P)21 to P120, in parallel with vehicle-administered controls. At P120, functional activity of the retina was evaluated by electroretinographic (ERG) recording. The effects of TUDCA on the number, morphology, integrity, and synaptic connectivity of retinal cells were characterized by immunofluorescence confocal microscopy. Results. The amplitude of ERG a- and b-waves was significantly higher in TUDCA-treated animals under both scotopic and photopic conditions than in control animals. In the central area of the retina, TUDCA-treated P23H rats showed threefold more photoreceptors than control animals. The number of TUNEL-positive cells was significantly smaller in TUDCA-treated rats, in which photoreceptor morphology was preserved. Presynaptic and postsynaptic elements, as well as the synaptic contacts between photoreceptors and bipolar or horizontal cells, were preserved in TUDCA-treated P23H rats. Furthermore, in TUDCA-treated rat retinas, the number of both rod bipolar and horizontal cell bodies, as well as the density of their synaptic terminals in the outer plexiform layer, was greater than in control rats. Conclusions. TUDCA treatment was capable of preserving cone and rod structure and function, together with their contacts with their postsynaptic neurons. The neuroprotective effects of TUDCA make this compound potentially useful for delaying retinal degeneration in RP.
Resumo:
Purpose. Mice rendered hypoglycemic by a null mutation in the glucagon receptor gene Gcgr display late-onset retinal degeneration and loss of retinal sensitivity. Acute hyperglycemia induced by dextrose ingestion does not restore their retinal function, which is consistent with irreversible loss of vision. The goal of this study was to establish whether long-term administration of high dietary glucose rescues retinal function and circuit connectivity in aged Gcgr−/− mice. Methods. Gcgr−/− mice were administered a carbohydrate-rich diet starting at 12 months of age. After 1 month of treatment, retinal function and structure were evaluated using electroretinographic (ERG) recordings and immunohistochemistry. Results. Treatment with a carbohydrate-rich diet raised blood glucose levels and improved retinal function in Gcgr−/− mice. Blood glucose increased from moderate hypoglycemia to euglycemic levels, whereas ERG b-wave sensitivity improved approximately 10-fold. Because the b-wave reflects the electrical activity of second-order cells, we examined for changes in rod-to-bipolar cell synapses. Gcgr−/− retinas have 20% fewer synaptic pairings than Gcgr+/− retinas. Remarkably, most of the lost synapses were located farthest from the bipolar cell body, near the distal boundary of the outer plexiform layer (OPL), suggesting that apical synapses are most vulnerable to chronic hypoglycemia. Although treatment with the carbohydrate-rich diet restored retinal function, it did not restore these synaptic contacts. Conclusions. Prolonged exposure to diet-induced euglycemia improves retinal function but does not reestablish synaptic contacts lost by chronic hypoglycemia. These results suggest that retinal neurons have a homeostatic mechanism that integrates energetic status over prolonged periods of time and allows them to recover functionality despite synaptic loss.
Resumo:
Rotenone is a widely used pesticide and a potent inhibitor of mitochondrial complex I (NADH-quinone reductase) that elicits the degeneration of dopaminergic neurons and thereby the appearance of a parkinsonian syndrome. Here we have addressed the alterations induced by rotenone at the functional, morphological and molecular levels in the retina, including those involving both dopaminergic and non-dopaminergic retinal neurons. Rotenone-treated rats showed abnormalities in equilibrium, postural instability and involuntary movements. In their outer retina we observed a loss of photoreceptors, and a reduced synaptic connectivity between those remaining and their postsynaptic neurons. A dramatic loss of mitochondria was observed in the inner segments, as well as in the axon terminals of photoreceptors. In the inner retina we observed a decrease in the expression of dopaminergic cell molecular markers, including loss of tyrosine hydroxylase immunoreactivity, associated with a reduction of the dopaminergic plexus and cell bodies. An increase in immunoreactivity of AII amacrine cells for parvalbumin, a Ca2+-scavenging protein, was also detected. These abnormalities were accompanied by a decrease in the amplitude of scotopic and photopic a- and b-waves and an increase in the b-wave implicit time, as well as by a lower amplitude and greater latency in oscillatory potentials. These results indicate that rotenone induces loss of vision by promoting photoreceptor cell death and impairment of the dopaminergic retinal system.
Resumo:
The purpose of this study was to characterize organ culture of human neuroretina and to establish survival and early degeneration patterns of neural and glial cells. Sixteen neuroretina explants were prepared from 2 postmortem eyes of 2 individuals. Four explants were used as fresh retina controls, and 12 were evaluated at 3, 6, and 9 days of culture. Neuroretina explants (5 × 5 mm) were cultured in Transwell® dishes with the photoreceptor layer facing the supporting membrane. Culture medium (Neurobasal A-based) was maintained in contact with the membrane beneath the explant. Cryostat and ultrathin sections were prepared for immunohistochemistry and electron microscopy. Neuroretinal modifications were evaluated after toluidine blue staining and after immunostaining for neuronal and glial cell markers. Ultrastructural changes were analyzed by electron microscopy. From 0 to 9 days in culture, there was progressive retinal degeneration, including early pyknosis of photoreceptor nuclei, cellular vacuolization in the ganglion cell layer, decrease of both plexiform layer thicknesses, disruption and truncation of photoreceptor outer segments (OS), and marked reduction in the number of nuclei at both nuclear layers where the cells were less densely packed. At 3 days there was swelling of cone OS with impairment of pedicles, loss of axons and dendrites of horizontal and rod bipolar cells that stained for calbindin (CB) and protein kinase C (PKC-α), respectively. After 9 days, horizontal cells were pyknotic and without terminal tips. There were similar degenerative processes in the outer plexiform layer for rod bipolar cells and loss of axon terminal lateral varicosities in the inner plexiform layer. Glial fibrillary acidic protein (GFAP) staining did not reveal a dramatic increase of gliosis in Müller cells. However, some Müller cells were CB immunoreactive at 6 days of culture. Over 9 days of culture, human neuroretina explants underwent morphological changes in photoreceptors, particularly the OS and axon terminals, and in postsynaptic horizontal and bipolar cells. These early changes, not previously described in cultured human samples, reproduce some celullar modifications after retinal damage. Thus, this model may be suitable to evaluate therapeutic agents during retinal degeneration processes.
Resumo:
Background. Mutations in the gene encoding human insulin-like growth factor-I (IGF-I) cause syndromic neurosensorial deafness. To understand the precise role of IGF-I in retinal physiology, we have studied the morphology and electrophysiology of the retina of the Igf1−/− mice in comparison with that of the Igf1+/− and Igf1+/+ animals during aging. Methods. Serological concentrations of IGF-I, glycemia and body weight were determined in Igf1+/+, Igf1+/− and Igf1−/− mice at different times up to 360 days of age. We have analyzed hearing by recording the auditory brainstem responses (ABR), the retinal function by electroretinographic (ERG) responses and the retinal morphology by immunohistochemical labeling on retinal preparations at different ages. Results. IGF-I levels are gradually reduced with aging in the mouse. Deaf Igf1−/− mice had an almost flat scotopic ERG response and a photopic ERG response of very small amplitude at postnatal age 360 days (P360). At the same age, Igf1+/− mice still showed both scotopic and photopic ERG responses, but a significant decrease in the ERG wave amplitudes was observed when compared with those of Igf1+/+ mice. Immunohistochemical analysis showed that P360 Igf1−/− mice suffered important structural modifications in the first synapse of the retinal pathway, that affected mainly the postsynaptic processes from horizontal and bipolar cells. A decrease in bassoon and synaptophysin staining in both rod and cone synaptic terminals suggested a reduced photoreceptor output to the inner retina. Retinal morphology of the P360 Igf1+/− mice showed only small alterations in the horizontal and bipolar cell processes, when compared with Igf1+/+ mice of matched age. Conclusions. In the mouse, IGF-I deficit causes an age-related visual loss, besides a congenital deafness. The present results support the use of the Igf1−/− mouse as a new model for the study of human syndromic deaf-blindness.
Resumo:
Saffron, an extract from Crocus sativus, has been largely used in traditional medicine for its antiapoptotic and anticarcinogenic properties. In this work, we investigate the effects of safranal, a component of saffron stigmas, in attenuating retinal degeneration in the P23H rat model of autosomal dominant retinitis pigmentosa. We demonstrate that administration of safranal to homozygous P23H line-3 rats preserves both photoreceptor morphology and number. Electroretinographic recordings showed higher a- and b-wave amplitudes under both photopic and scotopic conditions in safranal-treated versus non-treated animals. Furthermore, the capillary network in safranal-treated animals was preserved, unlike that found in untreated animals. Our findings indicate that dietary supplementation with safranal slows photoreceptor cell degeneration and ameliorates the loss of retinal function and vascular network disruption in P23H rats. This work also suggests that safranal could be potentially useful to retard retinal degeneration in patients with retinitis pigmentosa.
Resumo:
The fungi Pochonia chlamydosporia and Pochonia rubescens are parasites of nematode eggs and thus are biocontrol agents of nematodes. Proteolytic enzymes such as the S8 proteases VCP1 and P32, secreted during the pathogenesis of nematode eggs, are major virulence factors in these fungi. Recently, expression of these enzymes and of SCP1, a new putative S10 carboxypeptidase, was detected during endophytic colonization of barley roots by these fungi. In our study, we cloned the genomic and mRNA sequences encoding P32 from P. rubescens and SCP1 from P. chlamydosporia. P32 showed a high homology with the serine proteases Pr1A from the entomopathogenic fungus Metarhizium anisopliae and VCP1 from P. chlamydosporia (86% and 76% identity, respectively). However, the catalytic pocket of P32 showed differences in the amino acids of the substrate-recognition sites compared with the catalytic pockets of Pr1A and VCP1 proteases. Phylogenetic analysis of P32 suggests a common ancestor with protease Pr1A. SCP1 displays the characteristic features of a member of the S10 family of serine proteases. Phylogenetic comparisons show that SCP1 and other carboxypeptidases from filamentous fungi have an origin different from that of yeast vacuolar serine carboxypeptidases. Understanding protease genes from nematophagous fungi is crucial for enhancing the biocontrol potential of these organisms.
Resumo:
Calcineurin (protein phosphatase 2B) (CN) comprises a family of serine/threonine phosphatases that play a pivotal role in signal transduction cascades in a variety of cells, including neutrophils. Angiotensin II (Ang II) increases both activity and de novo synthesis of CN in human neutrophils. This study focuses on the role that intracellular redox status plays in the induction of CN activity by Ang II. Both de novo synthesis of CN and activity increase promoted by Ang II were downregulated when cells were treated with l-buthionine-(S,R)-sulfoximine, an inhibitor of synthesis of the antioxidant glutathione. We have also investigated the effect of pyrrolidine dithiocarbamate and phenazine methosulfate, which are antioxidant and oxidant compounds, respectively, and concluded that the intracellular redox status of neutrophils is highly critical for Ang II-induced increase of CN expression and activity. Results obtained in neutrophils from hypertensive patients were very similar to those obtained in these cells on treatment with Ang II. We have also addressed the possible functional implication of CN activation in the development of hypertension. Present findings indicate that downregulation of hemoxygenase-1 expression in neutrophils from hypertensive subjects is likely mediated by CN, which acts by hindering translocation to the nucleus of the transcription factor NRF2. These data support and extend our previous results and those from other authors on modulation of CN expression and activity levels by the intracellular redox status.
Resumo:
Liver X receptors (LXRs) are ligand-activated transcription factors of the nuclear receptor superfamily. They play important roles in controlling cholesterol homeostasis and as regulators of inflammatory gene expression and innate immunity, by blunting the induction of classical pro-inflammatory genes. However, opposite data have also been reported on the consequences of LXR activation by oxysterols, resulting in the specific production of potent pro-inflammatory cytokines and reactive oxygen species (ROS). The effect of the inflammatory state on the expression of LXRs has not been studied in human cells, and constitutes the main aim of the present work. Our data show that when human neutrophils are triggered with synthetic ligands, the synthesis of LXRα mRNA became activated together with transcription of the LXR target genes ABCA1, ABCG1 and SREBP1c. An inflammatory mediator, 15-deoxy-Δ12,14-prostaglandin J2 (15dPGJ2), hindered T0901317-promoted induction of LXRα mRNA expression together with transcription of its target genes in both neutrophils and human macrophages. This down-regulatory effect was dependent on the release of reactive oxygen species elicited by 15dPGJ2, since it was enhanced by pro-oxidant treatment and reversed by antioxidants, and was also mediated by ERK1/2 activation. Present data also support that the 15dPGJ2-induced serine phosphorylation of the LXRα molecule is mediated by ERK1/2. These results allow to postulate that down-regulation of LXR cellular levels by pro-inflammatory stimuli might be involved in the development of different vascular diseases, such as atherosclerosis.
Resumo:
The ubiquitin–proteasome system (UPS) is the main intracellular pathway for modulated protein turnover, playing an important role in the maintenance of cellular homeostasis. It also exerts a protein quality control through degradation of oxidized, mutant, denatured, or misfolded proteins and is involved in many biological processes where protein level regulation is necessary. This system allows the cell to modulate its protein expression pattern in response to changing physiological conditions and provides a critical protective role in health and disease. Impairments of UPS function in the central nervous system (CNS) underlie an increasing number of genetic and idiopathic diseases, many of which affect the retina. Current knowledge on the UPS composition and function in this tissue, however, is scarce and dispersed. This review focuses on UPS elements reported in the retina, including ubiquitinating and deubiquitinating enzymes (DUBs), and alternative proteasome assemblies. Known and inferred roles of protein ubiquitination, and of the related, SUMO conjugation (SUMOylation) process, in normal retinal development and adult homeostasis are addressed, including modulation of the visual cycle and response to retinal stress and injury. Additionally, the relationship between UPS dysfunction and human neurodegenerative disorders affecting the retina, including Alzheimer's, Parkinson's, and Huntington's diseases, are dealt with, together with numerous instances of retina-specific illnesses with UPS involvement, such as retinitis pigmentosa, macular degenerations, glaucoma, diabetic retinopathy (DR), and aging-related impairments. This information, though still basic and limited, constitutes a suitable framework to be expanded in incoming years and should prove orientative toward future therapy design targeting sight-affecting diseases with a UPS underlying basis.
Resumo:
Human neurodegenerative diseases, such as Parkinson’s disease (PD) and the neuromuscular disorders called dystroglycanopathies (DGPs), cause retinal impairments. We have used RNA-Seq technology to catalog all known genes linked to PD and DGPs expressed in the human retina and quantitate their mRNA levels in terms of FPKM. We have also characterized their expression profiles in the retina by determining their exonic, intronic and exon-intron junction expression levels, as well as the alternative splicing pattern of particular genes. We believe these data could pave the way toward understanding the molecular bases of sight deficiencies associated with neurodegenerative disorders.
Resumo:
Parkinson disease is mainly characterized by the degeneration of dopaminergic neurons in the central nervous system, including the retina. Different interrelated molecular mechanisms underlying Parkinson disease-associated neuronal death have been put forward in the brain, including oxidative stress and mitochondrial dysfunction. Systemic injection of the proneurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to monkeys elicits the appearance of a parkinsonian syndrome, including morphological and functional impairments in the retina. However, the intracellular events leading to derangement of dopaminergic and other retinal neurons in MPTP-treated animal models have not been so far investigated. Here we have used a comparative proteomics approach to identify proteins differentially expressed in the retina of MPTP-treated monkeys. Proteins were solubilized from the neural retinas of control and MPTP-treated animals, labelled separately with two different cyanine fluorophores and run pairwise on 2D DIGE gels. Out of >700 protein spots resolved and quantified, 36 were found to exhibit statistically significant differences in their expression levels, of at least ±1.4-fold, in the parkinsonian monkey retina compared with controls. Most of these spots were excised from preparative 2D gels, trypsinized and subjected to MALDI-TOF MS and LC-MS/MS analyses. Data obtained were used for protein sequence database interrogation, and 15 different proteins were successfully identified, of which 13 were underexpressed and 2 overexpressed. These proteins were involved in key cellular functional pathways such as glycolysis and mitochondrial electron transport, neuronal protection against stress and survival, and phototransduction processes. These functional categories underscore that alterations in energy metabolism, neuroprotective mechanisms and signal transduction are involved in MPTPinduced neuronal degeneration in the retina, in similarity to mechanisms thought to underlie neuronal death in the Parkinson’s diseased brain and neurodegenerative diseases of the retina proper.