971 resultados para Body Iron Stores
Resumo:
This study is one of the very few investigating the dioxin body burden of a group of child-bearing-aged women at an electronic waste (e-waste) recycling site (Taizhou, Zhejiang Province) (24 +/- 2.83 years of age, 40% were primiparae) and a reference site (Lin'an city, Zhejiang Province, about 245 km away from Taizhou) (24 +/- 2.35 years of age, 100% were primiparae) in China. Five sets of samples (each set consisted of human milk, placenta, and hair) were collected from each site. Body burdens of people from the e-waste processing site (human milk, 21.02 +/- 13.81 pg WHO-TEQ(1998/g) fat (World Health Organization toxic equivalency 1998); placenta, 31.15 +/- 15.67 pg WHO-TEQ(1998/g) fat; hair, 33.82 +/- 17.74 pg WHO-TEQ(1998/g) dry wt) showed significantly higher levels of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurnas (PCDD/Fs) than those from the reference site (human milk, 9.35 +/- 7.39 pg WHO-TEQ(1998/g) fat, placenta, 11.91 +/- 7.05 pg WHO-TEQ(1998/g) fat; hair, 5.59 +/- 4.36 pg WHO-TEQ(1998/g) dry wt) and were comparatively higher than other studies. The difference between the two sites was due to e-waste recycling operations, for example, open burning, which led to high background levels. Moreover, mothers from the e-waste recycling site consumed more foods of animal origin. The estimated daily intake of PCDD/Fs within 6 months by breast-fed infants from the e-waste processing site was 2 times higher than that from the reference site. Both values exceeded the WHO tolerable daily intake for adults by at least 25 and 11 times, respectively. Our results implicated that e-waste recycling operations cause prominent PCDD/F levels in the environment and in humans. The elevated body burden may have health implications for the next generation.
Resumo:
Changes in growth, photosynthetic pigments, and photosystem II (PS II) photochemical efficiency as well as production of siderophores of Microcystis aeruginosa and Microcystis wesenbergii were determined in this experiment. Results showed growths of M. aeruginosa and M. wesenbergii, measured by means of optical density at 665 nm, were severely inhibited under an iron-limited condition, whereas they thrived under an iron-replete condition. The contents of chlorophyll-a, carotenoid, phycocyanin, and allophycocyanin under an iron-limited condition were lower than those under an iron-replete condition, and they all reached maximal contents on day 4 under the iron-limited condition. PS II photochemical efficiencies (maximal PS II quantum yield), saturating light levels (I-k ) and maximal electron transport rates (ETRmax) of M. aeruginosa and M. wesenbergii declined sharply under the iron-limited condition. The PS II photochemical efficiency and ETRmax of M. aeruginosa rose , whereas in the strain of M. wesenbergii, they declined gradually under the iron-replete condition. In addition, I-k of M. aeruginosa and M. wesenbergii under the iron-replete condition did not change obviously. Siderophore production of M. aeruginosa was higher than that of M. wesenbergii under the iron-limited condition. It was concluded that M. aeruginosa requires higher iron concentration for physiological and biochemical processes compared with M. wesenbergii, but its tolerance against too high a concentration of iron is weaker than M. wesenbergii.
Resumo:
© 2014 AIP Publishing LLC. Superparamagnetic nanoparticles are employed in a broad range of applications that demand detailed magnetic characterization for superior performance, e.g., in drug delivery or cancer treatment. Magnetic hysteresis measurements provide information on saturation magnetization and coercive force for bulk material but can be equivocal for particles having a broad size distribution. Here, first-order reversal curves (FORCs) are used to evaluate the effective magnetic particle size and interaction between equally sized magnetic iron oxide (Fe2O3) nanoparticles with three different morphologies: (i) pure Fe2O3, (ii) Janus-like, and (iii) core/shell Fe2O3/SiO2synthesized using flame technology. By characterizing the distribution in coercive force and interaction field from the FORC diagrams, we find that the presence of SiO2in the core/shell structures significantly reduces the average coercive force in comparison to the Janus-like Fe2O3/SiO2and pure Fe2O3particles. This is attributed to the reduction in the dipolar interaction between particles, which in turn reduces the effective magnetic particle size. Hence, FORC analysis allows for a finer distinction between equally sized Fe2O3particles with similar magnetic hysteresis curves that can significantly influence the final nanoparticle performance.
Resumo:
Chemical-looping combustion (CLC) has the inherent property of separating the product CO2 from flue gases. Instead of air, it uses an oxygen carrier, usually in the form of a metal oxide, to provide oxygen for combustion. All techniques so far proposed for chemical looping with solid fuels involve initially the gasification of the solid fuel in order for the gaseous products to react with the oxygen carrier. Here, the rates of gasification of coal were compared when gasification was undertaken in a fluidised bed of either (i) an active Fe-based oxygen carrier used for chemical looping or (ii) inert sand. This enabled an examination of the ability of chemical looping materials to enhance the rate of gasification of solid fuels. Batch gasification and chemical-looping combustion experiments with a German lignite and its char are reported, using an electrically-heated fluidised bed reactor at temperatures from 1073 to 1223 K. The fluidising gas was CO2 in nitrogen. The kinetics of the gasification were found to be significantly faster in the presence of the oxygen carrier, especially at temperatures above 1123 K. A numerical model was developed to account for external and internal mass transfer and for the effect of the looping agent. The model also included the effects of the evolution of the pore structure at different conversions. The presence of Fe2O3 led to an increase in the rate of gasification because of the rapid oxidation of CO by the oxygen carrier to CO2. This resulted in the removal of CO and maintained a higher mole fraction of CO2 in the mixture of gas around the particle of char, i.e. within the mass transfer boundary layer surrounding the particle. This effect was most prominent at about 20% conversion when (i) the surface area for reaction was at its maximum and (ii) because of the accompanying increase in porosity and pore size, intraparticle resistance to gas mass transfer within the particle of char had fallen, compared with that in the initial particle. Excellent agreement was observed between the rates predicted by the numerical model and those observed experimentally. ©2013 Elsevier Ltd. All rights reserved.
Resumo:
A symmetry-extended mobility rule is formulated for body-hinge frameworks and used to derive necessary symmetry conditions for isostatic (statically and kinematically indeterminate) frameworks. Constructions for symmetric body-hinge frameworks with an isostatic scalar count are reported, and symmetry counts are used to examine these structures for hidden, symmetry-detectable mechanisms. Frameworks of this type may serve as examples for exploration of a symmetry extension of the (now proven) 'molecular conjecture'. © 2014 Elsevier Ltd. All rights reserved.
Resumo:
This paper describes an interactive system for quickly modelling 3D body shapes from a single image. It provides the user with a convenient way to obtain their 3D body shapes so as to try on virtual garments online. For the ease of use, we first introduce a novel interface for users to conveniently extract anthropometric measurements from a single photo, while using readily available scene cues for automatic image rectification. Then, we propose a unified probabilistic framework using Gaussian processes, which predict the body parameters from input measurements while correcting the aspect ratio ambiguity resulting from photo rectification. Extensive experiments and user studies have supported the efficacy of our system. This system is now being exploited commercially online1. © 2011. The copyright of this document resides with its authors.
Resumo:
To observe changes in the concentrations of size-fractionated iron and related environmental factors, experiments were conducted in the northeastern part of the shallow eutrophic lake Dianchi (China) from March 2003 to February 2004. Iron concentrations were measured for three size fractions: particulate iron (phi >0.22 mu m), colloidal iron (phi = 0.025-0.22 mu m) and soluble iron (phi < 0.025 mu m), and environmental factors (physicochemical and biological factors) were synchronously analyzed. Results showed that size-fractionated iron and the related environmental factors all varied with season. Colloidal iron accounted for only 5-9% of total iron, while particulate and soluble iron each accounted for 40-50% of total iron. The results suggested that size-fractionated iron can transform into each other, especially the highly reactive colloidal iron. Significant linear correlations were found between iron in different size fractions, and significant correlations were also obtained between chlorophyll a and environmental factors, such as TN, TP and secchi depth. No significant correlation between iron and chlorophyll a was found in this study.
Resumo:
Small fish abundance is usually high in heavily vegetated habitats in Yangtze lakes, China. Visual and swimming barriers created by dense macrophytes beds could reduce feeding efficiency and growth of small fishes. We tested the hypothesis that small fishes in habitats with dense macrophytes would show decreased feeding efficiency and reduced growth rates by comparing feeding efficiency (measured as the relative weight of fore-gut contents), total length, and condition factor of four small young-of-the-year fishes collected in the near-shore (heavily vegetated) and central (less vegetated) areas of Liangzi Lake. Feeding efficiency, total length, or condition factor were each significantly reduced in the near-shore area compared with the central area for Ctenogobius giurinus, Pseudorasbora parva and Carassius auratus auratus. This supports our hypothesis that vegetation abundance may mediate feeding efficiency and growth of small fishes. Although Hypseleotris swinhonis did not show significant decreases in feeding efficiency or growth in the near-shore area, there was not any reversed tendency, i.e. increased feeding rate or growth in the near-shore area compared to the central area.
Resumo:
Traditionally, in cognitive science the emphasis is on studying cognition from a computational point of view. Studies in biologically inspired robotics and embodied intelligence, however, provide strong evidence that cognition cannot be analyzed and understood by looking at computational processes alone, but that physical system-environment interaction needs to be taken into account. In this opinion article, we review recent progress in cognitive developmental science and robotics, and expand the notion of embodiment to include soft materials and body morphology in the big picture. We argue that we need to build our understanding of cognition from the bottom up; that is, all the way from how our body is physically constructed.
Resumo:
The adaptation of robots to changing tasks has been explored in modular self-reconfigurable robot research, where the robot structure is altered by adapting the connectivity of its constituent modules. As these modules are generally complex and large, an upper bound is imposed on the resolution of the built structures. Inspired by growth of plants or animals, robotic body extension (RBE) based on hot melt adhesives allows a robot to additively fabricate and assemble tools, and integrate them into its own body. This enables the robot to achieve tasks which it could not achieve otherwise. The RBE tools are constructed from hot melt adhesives and therefore generally small and only passive. In this paper, we seek to show physical extension of a robotic system in the order of magnitude of the robot, with actuation of integrated body parts, while maintaining the ability of RBE to construct parts with high resolution. Therefore, we present an enhancement of RBE based on hot melt adhesives with modular units, combining the flexibility of RBE with the advantages of simple modular units. We explain the concept of this new approach and demonstrate with two simple unit types, one fully passive and the other containing a single motor, how the physical range of a robot arm can be extended and additional actuation can be added to the robot body. © 2012 IEEE.
Resumo:
The capability of extending body structures is one of the most significant challenges in the robotics research and it has been partially explored in self-reconfigurable robotics. By using such a capability, a robot is able to adaptively change its structure from, for example, a wheel like body shape to a legged one to deal with complexity in the environment. Despite their expectations, the existing mechanisms for extending body structures are still highly complex and the flexibility in self-reconfiguration is still very limited. In order to account for the problems, this paper investigates a novel approach to robotic body extension by employing an unconventional material called Hot Melt Adhesives (HMAs). Because of its thermo-plastic and thermo-adhesive characteristics, this material can be used for additive fabrication based on a simple robotic manipulator while the established structures can be integrated into the robot's own body to accomplish a task which could not have been achieved otherwise. This paper first investigates the HMA material properties and its handling techniques, then evaluates performances of the proposed robotic body extension approach through a case study of a "water scooping" task. © 2012 IEEE.
Resumo:
It has been shown that sensory morphology and sensory-motor coordination enhance the capabilities of sensing in robotic systems. The tasks of categorization and category learning, for example, can be significantly simplified by exploiting the morphological constraints, sensory-motor couplings and the interaction with the environment. This paper argues that, in the context of sensory-motor control, it is essential to consider body dynamics derived from morphological properties and the interaction with the environment in order to gain additional insight into the underlying mechanisms of sensory-motor coordination, and more generally the nature of perception. A locomotion model of a four-legged robot is used for the case studies in both simulation and real world. The locomotion model demonstrates how attractor states derived from body dynamics influence the sensory information, which can then be used for the recognition of stable behavioral patterns and of physical properties in the environment. A comprehensive analysis of behavior and sensory information leads to a deeper understanding of the underlying mechanisms by which body dynamics can be exploited for category learning of autonomous robotic systems. © 2006 Elsevier Ltd. All rights reserved.
Resumo:
Exploiting the body dynamics to control the behavior of robots is one of the most challenging issues, because the use of body dynamics has a significant potential in order to enhance both complexity of the robot design and the speed of movement. In this paper, we explore the control strategy of rapid four-legged locomotion by exploiting the intrinsic body dynamics. Based on the fact that a simple model of four-legged robot is known to exhibit interesting locomotion behavior, this paper analyzes the characteristics of the dynamic locomotion for the purpose of the locomotion control. The results from a series of running experiments with a robot show that, by exploiting the unique characteristics induced by the body dynamics, the forward velocity can be controlled by using a very simple method, in which only one control parameter is required. Furthermore it is also shown that a few of such different control parameters exist, each of them can control the forward velocity. Interestingly, with these parameters, the robot exhibits qualitatively different behavior during the locomotion, which could lead to our comprehensive understanding toward the behavioral diversity of adaptive robotic systems. © 2005 IEEE.
Resumo:
Flames are often stabilised on bluff-bodies, yet their surface temperatures are rarely measured. This paper presents temperature measurements for the bluff body surface of the Cambridge/Sandia Stratified Swirl Burner. The flame is stabilized by a bluff body, designed to provide a series of turbulent premixed and stratified methane/air flames with a variable degree of swirl and stratification. Recently, modellers have raised concerns about the role of surface temperature on the resulting gas temperatures and the overall heat loss of the burner. Laser-induced phosphorescence is used to measure surface temperatures, with Mg4GeO6F:Mn as the excitation phosphor, creating a spatially resolved temperature map. Results show that the temperature of the bluff body is in the range 550-900 K for different operating conditions. The temperature distribution is strongly correlated with the degree of swirl and local equivalence ratio, reflecting the temperature distribution obtained in the gas phase. The overall heat loss represents only a small fraction (<0.5%) of the total heat load, yet the local surface temperature may affect the local heat transfer and gas temperatures. © 2014 The Combustion Institute.