872 resultados para Blood protein polymorphism


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Staphylococcus aureus is a common pathogen that causes a variety of infections including soft tissue infections, impetigo, septicemia toxic shock and scalded skin syndrome. Traditionally, Methicillin-Resistant Staphylococcus aureus (MRSA) was considered a Hospital-Acquired (HA) infection. It is now recognised that the frequency of infections with MRSA is increasing in the community, and that these infections are not originating from hospital environments. A 2007 report by the Centers for Disease Control and Prevention (CDC) stated that Staphylococcus aureus is the most important cause of serious and fatal infections in the USA. Community-Acquired MRSA (CA-MRSA) are genetically diverse and distinct, meaning they are able to be identified and tracked by way of genotyping. Genotyping of MRSA using Single nucleotide polymorphisms (SNPs) is a rapid and robust method for monitoring MRSA, specifically ST93 (Queensland Clone) dissemination in the community. It has been shown that a large proportion of CA-MRSA infections in Queensland and New South Wales are caused by ST93. The rationale for this project was that SNP analysis of MLST genes is a rapid and cost-effective method for genotyping and monitoring MRSA dissemination in the community. In this study, 16 different sequence types (ST) were identified with 41% of isolates identified as ST93 making it the predominate clone. Males and Females were infected equally with an average patient age of 45yrs. Phenotypically, all of the ST93 had an identical antimicrobial resistance pattern. They were resistant to the β-lactams – Penicillin, Flu(di)cloxacillin and Cephalothin but sensitive to all other antibiotics tested. Virulence factors play an important role in allowing S. aureus to cause disease by way of colonising, replication and damage to the host. One virulence factor of particular interest is the toxin Panton-Valentine leukocidin (PVL), which is composed of two separate proteins encoded by two adjacent genes. PVL positive CA-MRSA are shown to cause recurrent, chronic or severe skin and soft tissue infections. As a result, it is important that PVL positive CA-MRSA is genotyped and tracked. Especially now that CA-MRSA infections are more prevalent than HA-MRSA infections and are now deemed endemic in Australia. 98% of all isolates in this study tested positive for the PVL toxin gene. This study showed that PVL is present in many different community based ST, not just ST93, which were all PVL positive. With this toxin becoming entrenched in CA-MRSA, genotyping would provide more accurate data and a way of tracking the dissemination. PVL gene can be sub-typed using an allele-specific Real-Time PCR (RT-PCR) followed by High resolution meltanalysis. This allows the identification of PVL subtypes within the CA-MRSA population and allow the tracking of these clones in the community.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dental pulp cells (DPCs) are capable of differentiating into odontoblasts that secrete reparative dentin after pulp injury. The molecular mechanisms governing reparative dentinogenesis are yet to be fully understood. Here we investigated the differential protein profile of human DPCs undergoing odontogenic induction for 7 days. Using two-dimensional differential gel electrophoresis coupled with matrix-assisted laser adsorption ionization time of flight mass spectrometry, 2 3 protein spots related to the early odontogenic differentiation were identified. These proteins included cytoskeleton proteins, nuclear proteins, cell membrane-bound molecules, proteins involved in matrix synthesis, and metabolic enzymes. The expression of four identified proteins, which were heteronuclear ribonuclear proteins C, annexin VI, collagen type VI, and matrilin-2, was confirmed by Western blot and real-time realtime polymerase chain reaction analyses. This study generated a proteome reference map during odontoblast- like differentiation of human DPCs, which will be valuable to better understand the underlying molecular mechanisms in odontoblast-like differentiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The C allele of a common polymorphism of the serotonin 2A receptor (HTR2A) gene, T102C, results in reduced synthesis of 5-HT2A receptors and has been associated with current smoking status in adults. The -1438A/G polymorphism, located in the regulatory region of this gene, is in linkage disequilibrium with T102C, and the A allele is associated with increased promoter activity and with smoking in adult males. We investigated the contributions of the HTR2A gene, chronic psychological stress, and impulsivity to the prediction of cigarette smoking status and dependence in young adults. Methods: T102C and -1438A/G genotyping was conducted on 132 healthy Caucasian young adults (47 smokers) who completed self-report measures of chronic stress, depressive symptoms, impulsive personality and cigarette use. Results: A logistic regression analysis of current cigarette smoker user status, after adjusting for gender, depressive symptom severity and chronic stress, indicated that the T102C TT genotype relative to the CC genotype (OR = 7.53), and lower punishment sensitivity (OR = 0.91) were each significant predictive risk factors. However, for number of cigarettes smoked, only lower punishment sensitivity was a significant predictor (OR = 0.81). Conclusions: These data indicate the importance of the T102C polymorphism to tobacco use but not number of cigarettes smoked for Caucasian young adults. Future studies should examine whether this is explained by effects of nicotine on the serotonin system. Lower punishment sensitivity increased risk of both smoking and of greater consumption, perhaps via a reduced sensitivity to cigarette health warnings and negative physiological effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 2008 the Australian government decided to remove white blood cells from all blood products. This policy of universal leucodepletion was a change to the existing policy of supplying leucodepleted products to high risk patients only. The decision was made without strong information about the cost-effectiveness of universal leucodepletion. The aims for this policy analysis are to generate cost-effectiveness data about universal leucodepletion, and to add to our understanding of the role of evidence and the political reality of healthcare decision-making in Australia. The cost-effectiveness analysis revealed universal leucodepletion costs $398,943 to save one year of life. This exceeds the normal maximum threshold for Australia. We discuss this result within the context of how policy decisions are made about blood, and how it relates to the theory and process of policy making. We conclude that the absence of a strong voice for cost-effectiveness was an important omission in this decision.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and Aim: To investigate participation in a second round of colorectal cancer screening using a fecal occult blood test (FOBT) in an Australian rural community, and to assess the demographic characteristics and individual perspectives associated with repeat screening. ---------- Methods: Potential participants from round 1 (50–74 years of age) were sent an intervention package and asked to return a completed FOBT (n = 3406). Doctors of participants testing positive referred to colonoscopy as appropriate. Following screening, 119 participants completed qualitative telephone interviews. Multivariable logistic regression models evaluated the association between round-2 participation and other variables.---------- Results: Round-2 participation was 34.7%; the strongest predictor was participation in round 1. Repeat participants were more likely to be female; inconsistent screeners were more likely to be younger (aged 50–59 years). The proportion of positive FOBT was 12.7%, that of colonoscopy compliance was 98.6%, and the positive predictive value for cancer or adenoma of advanced pathology was 23.9%. Reasons for participation included testing as a precautionary measure or having family history/friends with colorectal cancer; reasons for non-participation included apathy or doctors’ advice against screening.---------- Conclusion: Participation was relatively low and consistent across rounds. Unless suitable strategies are identified to overcome behavioral trends and/or to screen out ineligible participants, little change in overall participation rates can be expected across rounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The absence of cellular immunity is central to the pathogenesis of herpesvirus-mediated diseases after allogeneic hemopoietic stem cell transplantation (HSCT). For both bone marrow (BM)– and granulocyte-colony stimulating factor–mobilized peripheral blood stem cells (PBSCs) HSCT, donor-derived Epstein-Barr virus (EBV) and cytomegalovirus (CMV) peptide–specific CD8+ T cells clones undergo early expansion and persist long-term, with additional diversification arising from novel antigen-specific clones from donor-derived progenitors. Whether BM or PBSC is the superior source of antiviral CD8+ T cells is unclear. Given that PBSC has largely replaced BM as a source of stem cells for HSCT, it is unlikely that herpesvirus effector T-cell reconstitution will ever be compared prospectively. PBSC grafts contain 10 to 30 times more T cells than BM and a randomized study found proven viral infections were more frequent in BM than PBSC recipients, suggesting viral-specific T-cell immunity is enhanced in PBSC. Recently Moss showed in lung cancer patients that herpesvirus-specific BM-derived CD8+ T cells have unique homing properties relative to herpesvirus-specific CD8+ T cells present in unmobilized peripheral blood (PB). Immunodominant EBV-lytic peptide–specific CD8+ T cells were enriched in BM but were reduced for CMV peptide–specific CD8+ T cells relative to PB. EBV-latent peptide–specific CD8+ T cells were equivalent, which has relevance in the context of posttransplantation lymphoproliferative disorder for which impaired EBV-latent CD8+ T-cell immunity is a risk-factor. A comparison of herpesvirus-specific cellular immunity in PBSC versus PB has yet to be performed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Arabidopsis thaliana NPR1 has been shown to be a key regulator of gene expression during the onset of a plant disease-resistance response known as systemic acquired resistance. The npr1 mutant plants fail to respond to systemic acquired resistance-inducing signals such as salicylic acid (SA), or express SA-induced pathogenesis-related (PR) genes. Using NPR1 as bait in a yeast two-hybrid screen, we identified a subclass of transcription factors in the basic leucine zipper protein family (AHBP-1b and TGA6) and showed that they interact specifically in yeast and in vitro with NPR1. Point mutations that abolish the NPR1 function in A. thaliana also impair the interactions between NPR1 and the transcription factors in the yeast two-hybrid assay. Furthermore, a gel mobility shift assay showed that the purified transcription factor protein, AHBP-1b, binds specifically to an SA-responsive promoter element of the A. thaliana PR-1 gene. These data suggest that NPR1 may regulate PR-1 gene expression by interacting with a subclass of basic leucine zipper protein transcription factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper was retracted by the Journal of Stem Cells and Development on February 15, 2013.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Impedance cardiography is an application of bioimpedance analysis primarily used in a research setting to determine cardiac output. It is a non invasive technique that measures the change in the impedance of the thorax which is attributed to the ejection of a volume of blood from the heart. The cardiac output is calculated from the measured impedance using the parallel conductor theory and a constant value for the resistivity of blood. However, the resistivity of blood has been shown to be velocity dependent due to changes in the orientation of red blood cells induced by changing shear forces during flow. The overall goal of this thesis was to study the effect that flow deviations have on the electrical impedance of blood, both experimentally and theoretically, and to apply the results to a clinical setting. The resistivity of stationary blood is isotropic as the red blood cells are randomly orientated due to Brownian motion. In the case of blood flowing through rigid tubes, the resistivity is anisotropic due to the biconcave discoidal shape and orientation of the cells. The generation of shear forces across the width of the tube during flow causes the cells to align with the minimal cross sectional area facing the direction of flow. This is in order to minimise the shear stress experienced by the cells. This in turn results in a larger cross sectional area of plasma and a reduction in the resistivity of the blood as the flow increases. Understanding the contribution of this effect on the thoracic impedance change is a vital step in achieving clinical acceptance of impedance cardiography. Published literature investigates the resistivity variations for constant blood flow. In this case, the shear forces are constant and the impedance remains constant during flow at a magnitude which is less than that for stationary blood. The research presented in this thesis, however, investigates the variations in resistivity of blood during pulsataile flow through rigid tubes and the relationship between impedance, velocity and acceleration. Using rigid tubes isolates the impedance change to variations associated with changes in cell orientation only. The implications of red blood cell orientation changes for clinical impedance cardiography were also explored. This was achieved through measurement and analysis of the experimental impedance of pulsatile blood flowing through rigid tubes in a mock circulatory system. A novel theoretical model including cell orientation dynamics was developed for the impedance of pulsatile blood through rigid tubes. The impedance of flowing blood was theoretically calculated using analytical methods for flow through straight tubes and the numerical Lattice Boltzmann method for flow through complex geometries such as aortic valve stenosis. The result of the analytical theoretical model was compared to the experimental impedance measurements through rigid tubes. The impedance calculated for flow through a stenosis using the Lattice Boltzmann method provides results for comparison with impedance cardiography measurements collected as part of a pilot clinical trial to assess the suitability of using bioimpedance techniques to assess the presence of aortic stenosis. The experimental and theoretical impedance of blood was shown to inversely follow the blood velocity during pulsatile flow with a correlation of -0.72 and -0.74 respectively. The results for both the experimental and theoretical investigations demonstrate that the acceleration of the blood is an important factor in determining the impedance, in addition to the velocity. During acceleration, the relationship between impedance and velocity is linear (r2 = 0.98, experimental and r2 = 0.94, theoretical). The relationship between the impedance and velocity during the deceleration phase is characterised by a time decay constant, ô , ranging from 10 to 50 s. The high level of agreement between the experimental and theoretically modelled impedance demonstrates the accuracy of the model developed here. An increase in the haematocrit of the blood resulted in an increase in the magnitude of the impedance change due to changes in the orientation of red blood cells. The time decay constant was shown to decrease linearly with the haematocrit for both experimental and theoretical results, although the slope of this decrease was larger in the experimental case. The radius of the tube influences the experimental and theoretical impedance given the same velocity of flow. However, when the velocity was divided by the radius of the tube (labelled the reduced average velocity) the impedance response was the same for two experimental tubes with equivalent reduced average velocity but with different radii. The temperature of the blood was also shown to affect the impedance with the impedance decreasing as the temperature increased. These results are the first published for the impedance of pulsatile blood. The experimental impedance change measured orthogonal to the direction of flow is in the opposite direction to that measured in the direction of flow. These results indicate that the impedance of blood flowing through rigid cylindrical tubes is axisymmetric along the radius. This has not previously been verified experimentally. Time frequency analysis of the experimental results demonstrated that the measured impedance contains the same frequency components occuring at the same time point in the cycle as the velocity signal contains. This suggests that the impedance contains many of the fluctuations of the velocity signal. Application of a theoretical steady flow model to pulsatile flow presented here has verified that the steady flow model is not adequate in calculating the impedance of pulsatile blood flow. The success of the new theoretical model over the steady flow model demonstrates that the velocity profile is important in determining the impedance of pulsatile blood. The clinical application of the impedance of blood flow through a stenosis was theoretically modelled using the Lattice Boltzman method (LBM) for fluid flow through complex geometeries. The impedance of blood exiting a narrow orifice was calculated for varying degrees of stenosis. Clincial impedance cardiography measurements were also recorded for both aortic valvular stenosis patients (n = 4) and control subjects (n = 4) with structurally normal hearts. This pilot trial was used to corroborate the results of the LBM. Results from both investigations showed that the decay time constant for impedance has potential in the assessment of aortic valve stenosis. In the theoretically modelled case (LBM results), the decay time constant increased with an increase in the degree of stenosis. The clinical results also showed a statistically significant difference in time decay constant between control and test subjects (P = 0.03). The time decay constant calculated for test subjects (ô = 180 - 250 s) is consistently larger than that determined for control subjects (ô = 50 - 130 s). This difference is thought to be due to difference in the orientation response of the cells as blood flows through the stenosis. Such a non-invasive technique using the time decay constant for screening of aortic stenosis provides additional information to that currently given by impedance cardiography techniques and improves the value of the device to practitioners. However, the results still need to be verified in a larger study. While impedance cardiography has not been widely adopted clinically, it is research such as this that will enable future acceptance of the method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bean golden mosaic geminivirus (BGMV) has a bipartite genome composed of two circular ssDNA components (DNA-A and DNA-B) and is transmitted by the whitefly, Bemisia tabaci. DNA-A encodes the viral replication proteins and the coat protein. To determine the role of BGMV coat protein systemic infection and whitefly transmission, two deletions and a restriction fragment inversion were introduced into the BGMV coat protein gene. All three coat protein mutants produced systemic infections when coinoculated with DNA-B onto Phaseolus vulgaris using electric discharge particle acceleration "particle gun." However, they were not sap transmissible and coat protein was not detected in mutant-infected plants. In addition, none of the mutants were transmitted by whiteflies. With all three mutants, ssDNA accumulation of DNA-A and DNA-B was reduced 25- to 50-fold and 3- to 10-fold, respectively, as compared to that of wild-type DNA. No effect on dsDNA-A accumulation was detected and there was 2- to 5-fold increase in dsDNA-B accumulation. Recombinants between the mutated DNA-A and DNA-B forms were identified when the inoculated coat protein mutant was linearized in the common region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

3D in vitro model systems that are able to mimic the in vivo microenvironment are now highly sought after in cancer research. Antheraea mylitta silk fibroin protein matrices were investigated as potential biomaterial for in vitro tumor modeling. We compared the characteristics of MDA-MB-231 cells on A. mylitta, Bombyx mori silk matrices, Matrigel, and tissue culture plates. The attachment and morphology of the MDA-MB-231 cell line on A. mylitta silk matrices was found to be better than on B. mori matrices and comparable to Matrigel and tissue culture plates. The cells grown in all 3D cultures showed more MMP-9 activity, indicating a more invasive potential. In comparison to B. mori fibroin, A. mylitta fibroin not only provided better cell adhesion, but also improved cell viability and proliferation. Yield coefficient of glucose consumed to lactate produced by cells on 3D A. mylitta fibroin was found to be similar to that of cancer cells in vivo. LNCaP prostate cancer cells were also cultured on 3D A. mylitta fibroin and they grew as clumps in long term culture. The results indicate that A. mylitta fibroin scaffold can provide an easily manipulated microenvironment system to investigate individual factors such as growth factors and signaling peptides, as well as evaluation of anticancer drugs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large mysticete whales represent a unique challenge for chemical risk assessment. Few epidemiological investigations are possible due to the low incidence of adult stranding events. Similarly their often extreme life-history adaptations of prolonged migration and fasting challenge exposure assumptions. Molecular biomarkers offer the potential to complement information yielded through tissue chemical analysis, as well as providing evidence of a molecular response to chemical exposure. In this study we confirm the presence of cytochrome P450 reductase (CPR) and cytochrome P450 isoenzyme 1A1 (CYP1A1) in epidermal tissue of southern hemisphere humpback whales (Megaptera novaeangliae). The detection of CYP1A1 in the integument of the humpback whale affords the opportunity for further quantitative non-destructive investigations of enzyme activity as a function of chemical stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction Polybrominated diphenyl ethers (PBDEs) are considered to be a cost effective and efficient way to reduce the possibility of product ignition and inhibit the spread of fire, thereby limiting harm caused by fires. PBDEs are incorporated into a wide variety of manufactured products and are now considered an ubiquitous contaminant found worldwide in biological and environmental samples1 . In comparison to “traditional” persistent organic pollutants (POPs), the exposure modes of PBDEs in humans are less well defined, although dietary sources, inhalation (air/particulate matter) and dust ingestion have been reported 2-4. Limited investigations of population specific factors such as age or gender and PBDE concentrations report: no conclusive correlation by age in adults; higher concentrations in children ; similar concentrations in maternal and cord blood; and no gender differences. After preliminary findings of higher PBDE concentrations in children than in adults in Australia11 we sought to investigate at what age the PBDE concentrations peaked in an effort to focus exposure studies. This investigation involved the collection of blood samples from young age groups and the development of a simple model to predict PBDE concentrations by age in Australia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antipsychotic medications act as either antagonists or partial agonists of the dopamine D2 receptor (DRD2) and antipsychotic drugs vary widely in their binding affinity for the D2 receptor (Kapur and Seeman, 2000). The DRD2 957CNT (rs6277) polymorphism has previously been associated with schizophrenia (Lawford et al., 2005) and the T-allele of the 957CNT polymorphism is associated with reduced mRNA stability and synthesis of the dopamine D2 receptor (Duan et al., 2003). The aim of the study was to determine if the rs6277 polymorphism predicts some of the variability of positive and negative symptoms observed in schizophrenia patients being treated with antipsychotic medication.