962 resultados para Biomass equation
Resumo:
We consider the problem of scattering of time-harmonic acoustic waves by an unbounded sound-soft rough surface. Recently, a Brakhage Werner type integral equation formulation of this problem has been proposed, based on an ansatz as a combined single- and double-layer potential, but replacing the usual fundamental solution of the Helmholtz equation with an appropriate half-space Green's function. Moreover, it has been shown in the three-dimensional case that this integral equation is uniquely solvable in the space L-2 (Gamma) when the scattering surface G does not differ too much from a plane. In this paper, we show that this integral equation is uniquely solvable with no restriction on the surface elevation or slope. Moreover, we construct explicit bounds on the inverse of the associated boundary integral operator, as a function of the wave number, the parameter coupling the single- and double-layer potentials, and the maximum surface slope. These bounds show that the norm of the inverse operator is bounded uniformly in the wave number, kappa, for kappa > 0, if the coupling parameter h is chosen proportional to the wave number. In the case when G is a plane, we show that the choice eta = kappa/2 is nearly optimal in terms of minimizing the condition number.
Resumo:
In this paper we consider the scattering of a plane acoustic or electromagnetic wave by a one-dimensional, periodic rough surface. We restrict the discussion to the case when the boundary is sound soft in the acoustic case, perfectly reflecting with TE polarization in the EM case, so that the total field vanishes on the boundary. We propose a uniquely solvable first kind integral equation formulation of the problem, which amounts to a requirement that the normal derivative of the Green's representation formula for the total field vanish on a horizontal line below the scattering surface. We then discuss the numerical solution by Galerkin's method of this (ill-posed) integral equation. We point out that, with two particular choices of the trial and test spaces, we recover the so-called SC (spectral-coordinate) and SS (spectral-spectral) numerical schemes of DeSanto et al., Waves Random Media, 8, 315-414 1998. We next propose a new Galerkin scheme, a modification of the SS method that we term the SS* method, which is an instance of the well-known dual least squares Galerkin method. We show that the SS* method is always well-defined and is optimally convergent as the size of the approximation space increases. Moreover, we make a connection with the classical least squares method, in which the coefficients in the Rayleigh expansion of the solution are determined by enforcing the boundary condition in a least squares sense, pointing out that the linear system to be solved in the SS* method is identical to that in the least squares method. Using this connection we show that (reflecting the ill-posed nature of the integral equation solved) the condition number of the linear system in the SS* and least squares methods approaches infinity as the approximation space increases in size. We also provide theoretical error bounds on the condition number and on the errors induced in the numerical solution computed as a result of ill-conditioning. Numerical results confirm the convergence of the SS* method and illustrate the ill-conditioning that arises.
Resumo:
We consider a finite element approximation of the sixth order nonlinear degenerate parabolic equation ut = ?.( b(u)? 2u), where generically b(u) := |u|? for any given ? ? (0,?). In addition to showing well-posedness of our approximation, we prove convergence in space dimensions d ? 3. Furthermore an iterative scheme for solving the resulting nonlinear discrete system is analysed. Finally some numerical experiments in one and two space dimensions are presented.
Resumo:
Two fundamental perspectives on the dynamics of midlatitude weather systems are provided by potential vorticity (PV) and the omega equation. The aim of this paper is to investigate the link between the two perspectives, which has so far received very little attention in the meteorological literature. It also aims to give a quantitative basis for discussion of quasi-geostrophic vertical motion in terms of components associated with system movement, maintaining a constant thermal structure, and with the development of that structure. The former links with the isentropic relative-flow analysis technique. Viewed in a moving frame of reference, the measured development of a system depends on the velocity of that frame of reference. The requirement that the development should be a minimum provides a quantitative method for determining the optimum system velocity. The component of vertical velocity associated with development is shown to satisfy an omega equation with forcing determined from the relative advection of interior PV and boundary temperature. The analysis carries through in the presence of diabatic heating provided the omega equation forcing is based on the interior PV and boundary thermal tendencies, including the heating effect. The analysis is shown to be possible also at the level of the semi-geostrophic approximation. The analysis technique is applied to a number of idealized problems that can be considered to be building blocks for midlatitude synoptic-scale dynamics. They focus on the influences of interior PV, boundary temperature, an interior boundary, baroclinic instability associated with two boundaries, and also diabatic heating. In each case, insights yielded by the new perspective are sought into the dynamical behaviour, especially that related to vertical motion. Copyright © 2003 Royal Meteorological Society