977 resultados para Biology, General|Biology, Cell


Relevância:

50.00% 50.00%

Publicador:

Resumo:

Historically, scientists in Brazil has significantly contributed to the biology, cultivation and structural organization of the pathogenic protozoan Toxoplasma gondiiand its interaction with host cells, starting with the description of the protozoan by Splendore in 1908. The intracellular and extracellular corpuscoli observed in rabbits, corresponded to what we now as tachyzoites. Later on, a pioneering method to grow T. gondii in tissue cultures was developed by Guimarães and Meyer, 1942. They also observed for the first time T. gondii by transmission electron microscopy and made the initial description of the cytoskeleton of T. gondii by observing negatively stained cells. In the 1980's, the relation of the cytoskeleton with the sub-pellicular microtubules was reveled by freeze-fracture. More recently, several Brazilian groups have analyzed in detail basic aspects of the early interaction of the protozoan with the host cell, such as the role of protein phosphorylation, transfer of host cell surface components to the protozoan and genesis and organization of the parasitophorous vacuole. Tachyzoites strategically inhibit nitric oxide production during active invasion of activated macrophages. In vitro studies on the sexual cycle of T. gondii using primary cultures of cat enterocytes and the egress from host cells are being carried out. Perspectives are that the contribution of Brazilian science to the knowledge on T. gondii biology will continue to flourish in years to come.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Waddlia chondrophila is an emerging pathogen causing miscarriages in humans and abortions in ruminants. The full genome of this Chlamydia-related bacterium has been recently completed, providing new insights into its biology and evolution. Moreover, new cell biology approaches and the use of novel inhibitors have allowed detailed investigations of its interaction with host cells.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Peripheral T-cell lymphomas (PTCLs) are heterogeneous and uncommon malignancies characterized by a usually aggressive clinical course. The current World Health Organization (WHO) classification delineates many entities grouped according to the clinical presentation as predominantly leukemic, cutaneous, extranodal, or nodal diseases. Yet, few genetic lesions serve as entity-defining markers. Using high-throughput methods, new recurrent genetic and molecular alterations are being discovered that are expected to refine the current classification and serve as diagnostic genetic markers and targets for novel therapies. There is increasing evidence that certain cellular subsets, in particular follicular helper T cells and gamma delta T cells, represent important defining markers and/or determinants of the biology of certain entities; nevertheless, the cellular derivation of many PTCL entities remains poorly characterized and there is evidence of plasticity in terms of cellular derivation (alpha-beta, gamma-delta, natural killer [NK]) especially in several extranodal entities with a cytotoxic profile. While most clonal NK/T-cell proliferations are in general highly malignant, some more indolent forms of NK or T-cell lympho-proliferations are being identified.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The present study was carried out in three localities of the state of São Paulo, Brazil: Araras (Dec/03-Dec/06), São Carlos (Nov/04-Nov/06) and Rifaina (Jul/04-Dec/06). Trap-nests were distributed among sites in the sampling areas and were collected every 35 days. Data from 295 nests indicate that T. aurifrons is a multivoltine species, with higher rates of nest building and cell production in the warm, rainy season. The trap-nests used by the females ranged from 117 to 467 mm in length and 3.1 to 16.6 mm in diameter. All nests showed deep plugs and a vestibular cell was found in 37% of the complete nests. The number of cells per nest ranged from one to 12. Females were larger than males, emerged from longer cells and their cocoons were significantly larger. A secondary 1:1 sex ratio was found in Araras and Rifaina. No correlation was observed between the diameter of the trap-nest and sex ratio. Males were usually oviposited in the first brood cells. Male and female developmental time from egg to adult was longer in the cold, dry season. Trypoxylon aurifrons provisioned their nests mainly with orb-spiders from the family Araneidae. The most important mortality factor was the death of immature forms, probably due to development failure. The most important parasitoid was Melittobia sp.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Membrane organization into condensed domains or rafts provides molecular platforms for selective recruitment of proteins. Cell migration is a general process that requires spatiotemporal targeting of Rac1 to membrane rafts. The protein machinery responsible for making rafts competent to recruit Rac1 remains elusive. Some members of the MAL family of proteins are involved in specialized processes dependent on this type of membrane. Because condensed membrane domains are a general feature of the plasma membrane of all mammalian cells, we hypothesized that MAL family members with ubiquitous expression and plasma membrane distribution could be involved in the organization of membranes for cell migration. We show that myeloid-associated differentiation marker (MYADM), a protein with unique features within the MAL family, colocalizes with Rac1 in membrane protrusions at the cell surface and distributes in condensed membranes. MYADM knockdown (KD) cells had altered membrane condensation and showed deficient incorporation of Rac1 to membrane raft fractions and, similar to Rac1 KD cells, exhibited reduced cell spreading and migration. Results of rescue-of-function experiments by expression of MYADM or active Rac1L61 in cells knocked down for Rac1 or MYADM, respectively, are consistent with the idea that MYADM and Rac1 act on parallel pathways that lead to similar functional outcomes.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Cephalochordates, urochordates, and vertebrates evolved from a common ancestor over 520 million years ago. To improve our understanding of chordate evolution and the origin of vertebrates, we intensively searched for particular genes, gene families, and conserved noncoding elements in the sequenced genome of the cephalochordate Branchiostoma floridae, commonly called amphioxus or lancelets. Special attention was given to homeobox genes, opsin genes, genes involved in neural crest development, nuclear receptor genes, genes encoding components of the endocrine and immune systems, and conserved cis-regulatory enhancers. The amphioxus genome contains a basic set of chordate genes involved in development and cell signaling, including a fifteenth Hox gene. This set includes many genes that were co-opted in vertebrates for new roles in neural crest development and adaptive immunity. However, where amphioxus has a single gene, vertebrates often have two, three, or four paralogs derived from two whole-genome duplication events. In addition, several transcriptional enhancers are conserved between amphioxus and vertebrates--a very wide phylogenetic distance. In contrast, urochordate genomes have lost many genes, including a diversity of homeobox families and genes involved in steroid hormone function. The amphioxus genome also exhibits derived features, including duplications of opsins and genes proposed to function in innate immunity and endocrine systems. Our results indicate that the amphioxus genome is elemental to an understanding of the biology and evolution of nonchordate deuterostomes, invertebrate chordates, and vertebrates.

Relevância:

50.00% 50.00%

Publicador:

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A range of models describing metapopulations is surveyed and their implications for conservation biology are described. An overview of the use of both population genetic elements and demographic theory in metapopulation models is given. It would appear that most of the current models suffer from either the use of over-simplified demography or the avoidance of selectively important genetic factors. The scale for which predictions are made by the various models is often obscure. A conceptual framework for describing metapopulations by utilising the concept of fitness of local populations is provided and some examples are given. The expectation that any general theory, such as that of metapopulations, can make useful predictions for particular problems of conservation is examined and compared with the prevailing 'state of the art' recommendations.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

SummaryCancer stem cells (CSC) are poorly differentiated, slowly proliferating cells, with high tumorigenic potential. Some of these cells, as it has been shown in leukemia, evade chemo- and radiotherapy and recapitulate the tumor composed of CSC and their highly proliferative progeny. Therefore, understanding the molecular biology of those cells is crucial for improvement of currently used anti-cancer therapies.This work is composed of two CSC-related projects. The first deals with CD44, a frequently used marker of CSC; the second involves Imp2 and its role in CSC bioenergetics. PART 1. CD44 is a multifunctional transmembrane protein involved in migration, homing, adhesion, proliferation and survival. It is overexpressed in many cancers and its levels are correlated with poor prognosis. CD44 is also highly expressed by CSC and in many malignancies it is used for CSC isolation.In the present work full-lenght CD44 nuclear localization was studied, including the mechanism of nuclear translocation and its functional role in the nucleus. Full-length CD44 can be found in nuclei of various cell types, regardless of their tumorigenic potential. For nuclear localization, CD44 needs to be first inserted into the cell membrane, from which it is transported via the endocytic pathway. Upon binding to transportinl it is translocated to the nucleus. The nuclear localization signal recognized by transportinl has been determined as the first 20 amino acids of the membrane proximal intracellular domain. Nuclear export of CD44 is facilitated by exportin Crml. Investigation of the function of nuclear CD44 revealed its implication in de novo RNA synthesis.PART 2. Glioblastoma multiforme is the most aggressive and most frequent brain malignancy. It was one of the first solid tumors from which CSC have been isolated. Based on the similarity between GBM CSC and normal stem cells expression of an oncofetal mRNA binding protein Imp2 has been investigated.Imp2 is absent in normal brain as well as in low grade gliomas, but is expressed in over 75% GBM cases and its expression is higher in CSC compared to their more differentiated counterparts. Analysis of mRNA transcripts bound by Imp2 and its protein interactors revealed that in GBM CSC Imp2 may be implicated in mitochondrial metabolism. Indeed, shRNA mediated silencing of protein expression led to decreased mitochondrial activity, decreased oxygen consumption and decreased activity of respiratory chain protein complex I. Moreover, lack of Imp2 severely affected self-renewal and tumorigenicity of GBM CSC. Experimental evidence suggest that GBM CSC depend on mitochondrial oxidative phosphorylation as an energy producing pathway and that Imp2 is a novel regulator of this pathway.RésuméLes cellules cancéreuses souches sont des cellules peu différentiées, à proliferation lente et hautement tumorigénique. Ces cellules sont radio-chimio résistantes et sont capable reformer la tumeur dans sont intégralité, reproduisant l'hétérogénéité cellulaire présent dans la tumeur d'origine. Pour améliorer les therapies antitumorales actuelles il est crucial de comprendre les mécanismes moléculaires qui caractérisent cette sous-population de cellules hautement malignes.Ce travail de thèse se compose de deux projets s'articulant autour du même axe :Le CD44 est une protéine multifonctionnelle et transmembranaire très souvent utilisée comme marqueur de cellules souches tumorales dans différents cancers. Elle est impliquée dans la migration, l'adhésion, la prolifération et la survie des cellules. Lors de ce travail de recherche, nous nous sommes intéressés à la localisation cellulaire du CD44, ainsi qu'aux mécanismes permettant sa translocation nucléaire. En effet, bien que principalement décrit comme un récepteur de surface transmembranaire, le CD44 sous sa forme entière, non clivée en peptides, peut également être observé à l'intérieur du noyau de diverses cellules, quel que soit leur potentiel tumorigénique. Pour passer ainsi d'un compartiment cellulaire à un autre, le CD44 doit d'abord être inséré dans la membrane plasmique, d'où il est transporté par endocytose jusqu'à l'intérieur du cytoplasme. La transportai permet ensuite la translocation nucléaire du CD44 via une « séquence signal » contenue dans les 20 acides aminés du domaine cytoplasmique qui bordent la membrane. A l'inverse, le CD44 est exporté du noyau grâce à l'exportin Crml. En plus des mécanismes décrits ci-dessus, cette étude a également mis en évidence l'implication du CD44 dans la synthèse des ARN, d'où sa présence dans le noyau.Le glioblastome est la plus maligne et la plus fréquente des tumeurs cérébrales. Dans ce second projet de recherche, le rôle de IMP2 dans les cellules souches tumorales de glioblastomes a été étudié. La présence de cette protéine oncofoetale a d'abord été mise en évidence dans 75% des cas les plus agressifs des gliomes (grade IV, appelés glioblastomes), tandis qu'elle n'est pas exprimée dans les grades I à III de ces tumeurs, ni dans le cerveau sain. De plus, IMP2 est apparue comme étant davantage exprimée dans les cellules souches tumorales que dans les cellules déjà différenciées. La baisse de l'expression de IMP2 au moyen de shRNA a résulté en une diminution de l'activité mitochondriale, en une réduction de la consommation d'oxygène ainsi qu'en une baisse de l'activité du complexe respiratoire I.L'inhibition de IMP2 a également affecté la capacité de renouvellement de la population des cellules souches tumorales ainsi que leur aptitude à former des tumeurs.Lors de ce travail de thèse, une nouvelle fonction d'un marqueur de cellules souches tumorales a été mise en évidence, ainsi qu'un lien important entre la bioénergétique de ces cellules et l'expression d'une protéine oncofoetale.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Decapentaplegic (Dpp), the fly homolog of the secreted mammalian BMP2/4 signaling molecules, is involved in almost all aspects of fly development. Dpp has critical functions at all developmental stages, from patterning of the eggshell to the determination of adult intestinal stem cell identity. Here, we focus on recent findings regarding the transcriptional regulatory logic of the pathway, on a new feedback regulator, Pentagone, and on Dpp's roles in scaling and growth of the Drosophila wing.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Labile or mutation-sensitised proteins may spontaneously convert into aggregation-prone conformations that may be toxic and infectious. This hazardous behavior, which can be described as a form of "molecular criminality", can be actively counteracted in the cell by a network of molecular chaperone and proteases. Similar to law enforcement agents, molecular chaperones and proteases can specifically identify, apprehend, unfold and thus neutralize "criminal" protein conformers, allowing them to subsequently refold into harmless functional proteins. Irreversibly damaged polypeptides that have lost the ability to natively refold are preferentially degraded by highly controlled ATP-consuming proteases. Damaged proteins that escape proteasomal degradation can also be "incarcerated" into dense amyloids, "evicted" from the cell, or internally "exiled" to the lysosome to be hydrolysed and recycled. Thus, remarkable parallels exist between molecular and human forms of criminality, as well as in the cellular and social responses to various forms of crime. Yet, differences also exist: whereas programmed death is the preferred solution chosen by aged and aggregation-stressed cells, collective suicide is seldom chosen by lawless societies. Significantly, there is no cellular equivalent for the role of familial care and of education in general, which is so crucial to the proper shaping of functional persons in the society. Unlike in the cell, humanism introduces a bias against radical solutions such as capital punishment, favouring crime prevention, reeducation and social reinsertion of criminals.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The discovery of hypocretins (orexins) and their causal implication in narcolepsy is the most important advance in sleep research and sleep medicine since the discovery of rapid eye movement sleep. Narcolepsy with cataplexy is caused by hypocretin deficiency owing to destruction of most of the hypocretin-producing neurons in the hypothalamus. Ablation of hypocretin or hypocretin receptors also leads to narcolepsy phenotypes in animal models. Although the exact mechanism of hypocretin deficiency is unknown, evidence from the past 20 years strongly favours an immune-mediated or autoimmune attack, targeting specifically hypocretin neurons in genetically predisposed individuals. These neurons form an extensive network of projections throughout the brain and show activity linked to motivational behaviours. The hypothesis that a targeted immune-mediated or autoimmune attack causes the specific degeneration of hypocretin neurons arose mainly through the discovery of genetic associations, first with the HLA-DQB1*06:02 allele and then with the T-cell receptor α locus. Guided by these genetic findings and now awaiting experimental testing are models of the possible immune mechanisms by which a specific and localised brain cell population could become targeted by T-cell subsets. Great hopes for the identification of new targets for therapeutic intervention in narcolepsy also reside in the development of patient-derived induced pluripotent stem cell systems.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

BACKGROUND: There is an ever-increasing volume of data on host genes that are modulated during HIV infection, influence disease susceptibility or carry genetic variants that impact HIV infection. We created GuavaH (Genomic Utility for Association and Viral Analyses in HIV, http://www.GuavaH.org), a public resource that supports multipurpose analysis of genome-wide genetic variation and gene expression profile across multiple phenotypes relevant to HIV biology. FINDINGS: We included original data from 8 genome and transcriptome studies addressing viral and host responses in and ex vivo. These studies cover phenotypes such as HIV acquisition, plasma viral load, disease progression, viral replication cycle, latency and viral-host genome interaction. This represents genome-wide association data from more than 4,000 individuals, exome sequencing data from 392 individuals, in vivo transcriptome microarray data from 127 patients/conditions, and 60 sets of RNA-seq data. Additionally, GuavaH allows visualization of protein variation in ~8,000 individuals from the general population. The publicly available GuavaH framework supports queries on (i) unique single nucleotide polymorphism across different HIV related phenotypes, (ii) gene structure and variation, (iii) in vivo gene expression in the setting of human infection (CD4+ T cells), and (iv) in vitro gene expression data in models of permissive infection, latency and reactivation. CONCLUSIONS: The complexity of the analysis of host genetic influences on HIV biology and pathogenesis calls for comprehensive motors of research on curated data. The tool developed here allows queries and supports validation of the rapidly growing body of host genomic information pertinent to HIV research.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The tumor environment is critical for tumor maintenance and progression. Integrins are a large family of cell surface receptors mediating the interaction of tumor cells with their microenvironment and play important roles in glioma biology, including migration, invasion, angiogenesis and tumor stem cell anchorage. Here, we review preclinical and clinical data on integrin inhibition in malignant gliomas. Various pharmacological approaches to the modulation of integrin signaling have been explored including antibodies and peptide-based agents. Cilengitide, a cyclic RGD-mimetic peptide of αvβ3 and αvβ5 integrins is in advanced clinical development in glioblastoma. Cilengitide had only limited activity as a single agent in glioblastoma, but, when added to standard radiochemotherapy, appeared to prolong progression-free and overall survival in patients with newly diagnosed glioblastomas and methylation of the promoter of the O⁶ methylguanine methyltransferase (MGMT) gene. MGMT gene promoter methylation in turn predicts benefit from alkylating chemotherapy. A phase III randomized clinical trial in conjunction with standard radiochemotherapy in newly diagnosed glioblastoma patients with MGMT gene promoter methylation has recently completed accrual (EORTC 26071-22072). A companion trial explores a dose-escalated regimen of cilengitide added to radiotherapy plus temozolomide in patients without MGMT gene promoter methylation. Promising results in these trials would probably result in a broader interest in integrins as targets for glioma therapy and hopefully the development of a broader panel of anti-integrin agents.