991 resultados para Bio-defence genes
Resumo:
Several approaches have been developed to estimate both the relative and absolute rates of speciation and extinction within clades based on molecular phylogenetic reconstructions of evolutionary relationships, according to an underlying model of diversification. However, the macroevolutionary models established for eukaryotes have scarcely been used with prokaryotes. We have investigated the rate and pattern of cladogenesis in the genus Aeromonas (γ-Proteobacteria, Proteobacteria, Bacteria) using the sequences of five housekeeping genes and an uncorrelated relaxed-clock approach. To our knowledge, until now this analysis has never been applied to all the species described in a bacterial genus and thus opens up the possibility of establishing models of speciation from sequence data commonly used in phylogenetic studies of prokaryotes. Our results suggest that the genus Aeromonas began to diverge between 248 and 266 million years ago, exhibiting a constant divergence rate through the Phanerozoic, which could be described as a pure birth process.
Resumo:
O objetivo deste trabalho foi identificar a presença dos genes Ty-2 e Ty-3, de resistência a begomovírus, em acessos de tomateiro do Banco de Germoplasma de Hortaliças da Universidade Federal de Viçosa. Os oligonucleotídeos TO302 F/R e FLUW25 F/R foram utilizados em reações de PCR, para verificar a presença de marcadores relacionados aos genes Ty-2 e Ty-3, respectivamente. Observou-se a presença do gene Ty-2, em heterozigose na subamostra BGH-6881 (Solanum peruvianum), e do gene Ty-3, em homozigose nas subamostras BGH-6878, BGH-6897 (S. lycopersicum) e em heterozigose na subamostra BGH-6881. A identificação dos genes de resistência, com reações de PCR, representa um avanço para os programas de melhoramento de tomateiro no Brasil.
Resumo:
O objetivo deste trabalho foi identificar genes candidatos da subfamília de fatores transcricionais HD-Zip I que contribuem para a tolerância à seca em soja. Foram avaliados trifólios de soja de cultivar tolerante (Embrapa 48) e suscetível à seca (BR 16), sob três níveis de deficit hídrico: ausência, moderado (-1,5 MPa) e severo (-3,0 MPa). Pela análise dos promotores, foi identificada a presença de possíveis elementos cis-regulatórios relacionados à resposta à seca, nos três genes avaliados (GmHB6, GmHB13 e GmHB21). No entanto, não houve padrão de distribuição específico associado à maior tolerância do genótipo à seca. Com a análise comparativa, foram identificados seis elementos cis-regulatórios potencialmente envolvidos na indução da expressão gênica sob seca. O gene GmHB13 foi exclusivamente induzido pela seca no genótipo tolerante, e o gene GmHB6 apresentou redução da expressão somente no genótipo suscetível. Já o gene GmHB21, apresentou aumento da expressão em ambos os genótipos. O gene GmHB13 é um importante elemento na regulação do mecanismo de tolerância à seca em soja, na cultivar tolerante Embrapa 48.
Resumo:
O objetivo deste trabalho foi identificar e caracterizar os genes cry3, vip1, vip2 e vip1/vip2 em uma coleção de 1.078 isolados de Bacillus thuringiensis potencialmente tóxicos para larvas de coleópteros. Foram utilizados pares de oligonucleotídeos iniciadores gerais obtidos a partir de regiões conservadas dos genes e do alinhamento de sequências consenso. Posteriormente, os isolados positivos foram caracterizados por meio da técnica de PCR‑RFLP, tendo-se utilizado enzimas de restrição específicas, para identificar novas subclasses de genes nos isolados. Cento e cinquenta e um isolados foram positivos para os genes avaliados, com maior frequência para o gene vip1/vip2 (139 isolados). Pela técnica de PCR‑RFLP, foram observados 14 perfis polimórficos, o que indica a presença de diferentes alelos e, consequentemente, de distintas subclasses desses genes.
Resumo:
ABSTRACT: BACKGROUND: Plants are sessile and therefore have to perceive and adjust to changes in their environment. The presence of neighbours leads to a competitive situation where resources and space will be limited. Complex adaptive responses to such situation are poorly understood at the molecular level. RESULTS: Using microarrays, we analysed whole-genome expression changes in Arabidopsis thaliana plants subjected to intraspecific competition. The leaf and root transcriptome was strongly altered by competition. Differentially expressed genes were enriched in genes involved in nutrient deficiency (mainly N, P, K), perception of light quality, and responses to abiotic and biotic stresses. Interestingly, performance of the generalist insect Spodoptera littoralis on densely grown plants was significantly reduced, suggesting that plants under competition display enhanced resistance to herbivory. CONCLUSIONS: This study provides a comprehensive list of genes whose expression is affected by intraspecific competition in Arabidopsis. The outcome is a unique response that involves genes related to light, nutrient deficiency, abiotic stress, and defence responses.
Resumo:
Different signatures of natural selection persist over varying time scales in our genome, revealing possible episodes of adaptative evolution during human history. Here, we identify genes showing signatures of ancestral positive selection in the human lineage and investigate whether some of those genes have been evolving adaptatively in extant human populations. Specifically, we compared more than 11,000 human genes with their orthologs inchimpanzee, mouse, rat and dog and applied a branch-site likelihood method to test for positive selection on the human lineage. Among the significant cases, a robust set of 11 genes were then further explored for signatures of recent positive selection using SNP data. We genotyped 223 SNPs in 39 worldwide populations from the HGDP Diversity panel and supplemented this information with available genotypes for up to 4,814 SNPs distributed along 2 Mb centered on each gene. After exploring the allele frequency spectrum, population differentiation and the maintainance of long unbroken haplotypes, we found signals of recent adaptative phenomena in only one of the 11 candidate gene regions. However, the signal ofrecent selection in this region may come from a different, neighbouring gene (CD5) ratherthan from the candidate gene itself (VPS37C). For this set of positively-selected genes in thehuman lineage, we find no indication that these genes maintained their rapid evolutionarypace among human populations. Based on these data, it therefore appears that adaptation forhuman-specific and for population-specific traits may have involved different genes.
Resumo:
The objective of this work was to evaluate the catabolic gene diversity for the bacterial degradation of aromatic hydrocarbons in anthropogenic dark earth of Amazonia (ADE) and their biochar (BC). Functional diversity analyses in ADE soils can provide information on how adaptive microorganisms may influence the fertility of soils and what is their involvement in biogeochemical cycles. For this, clone libraries containing the gene encoding for the alpha subunit of aromatic ring-hydroxylating dioxygenases (α-ARHD bacterial gene) were constructed, totaling 800 clones. These libraries were prepared from samples of an ADE soil under two different land uses, located at the Caldeirão Experimental Station - secondary forest (SF) and agriculture (AG) -, and the biochar (SF_BC and AG_BC, respectively). Heterogeneity estimates indicated greater diversity in BC libraries; and Venn diagrams showed more unique operational protein clusters (OPC) in the SF_BC library than the ADE soil, which indicates that specific metabolic processes may occur in biochar. Phylogenetic analysis showed unidentified dioxygenases in ADE soils. Libraries containing functional gene encoding for the alpha subunit of the aromatic ring-hydroxylating dioxygenases (ARHD) gene from biochar show higher diversity indices than those of ADE under secondary forest and agriculture.
Resumo:
H3K4me3 is a histone modification that accumulates at the transcription-start site (TSS) of active genes and is known to be important for transcription activation. The way in which H3K4me3 is regulated at TSS and the actual molecular basis of its contribution to transcription remain largely unanswered. To address these questions, we have analyzed the contribution of dKDM5/LID, the main H3K4me3 demethylase in Drosophila, to the regulation of the pattern of H3K4me3. ChIP-seq results show that, at developmental genes, dKDM5/LID localizes at TSS and regulates H3K4me3. dKDM5/LID target genes are highly transcribed and enriched in active RNApol II and H3K36me3, suggesting a positive contribution to transcription. Expression-profiling show that, though weakly, dKDM5/LID target genes are significantly downregulated upon dKDM5/LID depletion. Furthermore, dKDM5/LID depletion results in decreased RNApol II occupancy, particularly by the promoter-proximal Pol lloser5 form. Our results also show that ASH2, an evolutionarily conserved factor that locates at TSS and is required for H3K4me3, binds and positively regulates dKDM5/LID target genes. However, dKDM5/LID and ASH2 do not bind simultaneously and recognize different chromatin states, enriched in H3K4me3 and not, respectively. These results indicate that, at developmental genes, dKDM5/LID and ASH2 coordinately regulate H3K4me3 at TSS and that this dynamic regulation contributes to transcription.
Resumo:
Multiple osteochondromas is an autosomal dominant skeletal disorder characterized by the formation of multiple cartilage-capped tumours. Two causal genes have been identified, EXT1 and EXT2, which account for 65% and 30% of cases, respectively. We have undertaken a mutation analysis of the EXT1 and EXT2 genes in 39 unrelated Spanish patients, most of them with moderate phenotype, and looked for genotype-phenotype correlations. We found the mutant allele in 37 patients, 29 in EXT1 and 8 in EXT2. Five of the EXT1 mutations were deletions identified by MLPA. Two cases of mosaicism were documented. We detected a lower number of exostoses in patients with missense mutation versus other kinds of mutations. In conclusion, we found a mutation in EXT1 or in EXT2 in 95% of the Spanish patients. Eighteen of the mutations were novel.
Resumo:
Multiple osteochondromas is an autosomal dominant skeletal disorder characterized by the formation of multiple cartilage-capped tumours. Two causal genes have been identified, EXT1 and EXT2, which account for 65% and 30% of cases, respectively. We have undertaken a mutation analysis of the EXT1 and EXT2 genes in 39 unrelated Spanish patients, most of them with moderate phenotype, and looked for genotype-phenotype correlations. We found the mutant allele in 37 patients, 29 in EXT1 and 8 in EXT2. Five of the EXT1 mutations were deletions identified by MLPA. Two cases of mosaicism were documented. We detected a lower number of exostoses in patients with missense mutation versus other kinds of mutations. In conclusion, we found a mutation in EXT1 or in EXT2 in 95% of the Spanish patients. Eighteen of the mutations were novel.
Resumo:
While there is evidence that the two ubiquitously expressed thyroid hormone (T3) receptors, TRalpha1 and TRbeta1, have distinct functional specificities, the mechanism by which they discriminate potential target genes remains largely unexplained. In this study, we demonstrate that the thyroid hormone response elements (TRE) from the malic enzyme and myelin basic protein genes (METRE and MBPTRE) respectively, are not functionally equivalent. The METRE, which is a direct repeat motif with a 4-base pair gap between the two half-site hexamers binds thyroid hormone receptor as a heterodimer with 9-cis-retinoic acid receptor (RXR) and mediates a high T3-dependent activation in response to TRalpha1 or TRbeta1 in NIH3T3 cells. In contrast, the MBPTRE, which consists of an inverted palindrome formed by two hexamers spaced by 6 base pairs, confers an efficient transactivation by TRbeta1 but a poor transactivation by TRalpha1. While both receptors form heterodimers with RXR on MBPTRE, the poor transactivation by TRalpha1 correlates also with its ability to bind efficiently as a monomer. This monomer, which is only observed with TRalpha1 bound to MBPTRE, interacts neither with N-CoR nor with SRC-1, explaining its functional inefficacy. However, in Xenopus oocytes, in which RXR proteins are not detectable, the transactivation mediated by TRalpha1 and TRbeta1 is equivalent and independent of a RXR supply, raising the question of the identity of the thyroid hormone receptor partner in these cells. Thus, in mammalian cells, the binding characteristics of TRalpha1 to MBPTRE (i.e. high monomer binding efficiency and low transactivation activity) might explain the particular pattern of T3 responsiveness of MBP gene expression during central nervous system development.
Resumo:
Massively parallel signature sequencing (MPSS) generates millions of short sequence tags corresponding to transcripts from a single RNA preparation. Most MPSS tags can be unambiguously assigned to genes, thereby generating a comprehensive expression profile of the tissue of origin. From the comparison of MPSS data from 32 normal human tissues, we identified 1,056 genes that are predominantly expressed in the testis. Further evaluation by using MPSS tags from cancer cell lines and EST data from a wide variety of tumors identified 202 of these genes as candidates for encoding cancer/testis (CT) antigens. Of these genes, the expression in normal tissues was assessed by RT-PCR in a subset of 166 intron-containing genes, and those with confirmed testis-predominant expression were further evaluated for their expression in 21 cancer cell lines. Thus, 20 CT or CT-like genes were identified, with several exhibiting expression in five or more of the cancer cell lines examined. One of these genes is a member of a CT gene family that we designated as CT45. The CT45 family comprises six highly similar (>98% cDNA identity) genes that are clustered in tandem within a 125-kb region on Xq26.3. CT45 was found to be frequently expressed in both cancer cell lines and lung cancer specimens. Thus, MPSS analysis has resulted in a significant extension of our knowledge of CT antigens, leading to the discovery of a distinctive X-linked CT-antigen gene family.
Resumo:
In eukaryotic cells, transgene expression levels may be limited by an unfavourable chromatin structure at the integration site. Epigenetic regulators are DNA sequences which may protect transgenes from such position effect. We evaluated different epigenetic regulators for their ability to protect transgene expression at telomeres, which are commonly associated to low or inconsistent expression because of their repressive chromatin environment. Although to variable extents, matrix attachment regions (MARs), ubiquitous chromatin opening element (UCOE) and the chicken cHS4 insulator acted as barrier elements, protecting a telomeric-distal transgene from silencing. MARs also increased the probability of silent gene reactivation in time-course experiments. Additionally, all MARs improved the level of expression in non-silenced cells, unlike other elements. MARs were associated to histone marks usually linked to actively expressed genes, especially acetylation of histone H3 and H4, suggesting that they may prevent the spread of silencing chromatin by imposing acetylation marks on nearby nucleosomes. Alternatively, an UCOE was found to act by preventing deposition of repressive chromatin marks. We conclude that epigenetic DNA elements used to enhance and stabilize transgene expression all have specific epigenetic signature that might be at the basis of their mode of action.
Resumo:
Multiple epiphyseal dysplasia (MED) is a genetically heterogeneous group of diseases characterized by variable degrees of epiphyseal abnormality primarily involving the hip and knee joints. The purpose of this study was to investigate the frequency of mutations in individuals with a clinical and radiographic diagnosis of MED and to test the hypothesis that characteristic radiological findings may be helpful in predicting the gene responsible. The radiographs of 74 Korean patients were evaluated by a panel of skeletal dysplasia experts. Six genes known to be associated with MED (COMP, MATN3, COL9A1, COL9A2, COL9A3, and DTDST) were screened by sequencing. Mutations were found in 55 of the 63 patients (87%). MATN3 mutations were found in 30 patients (55%), followed by COMP mutations in 23 (41%), and COL9A2 and DTDST mutations in one patient (2%) each. Comparisons of radiographic findings in patients with COMP and MATN3 mutations showed that albeit marked abnormalities in hip and knee joints were observed in both groups, the degree of involvement and the morphology of dysplastic epiphyses differed markedly. The contour of the pelvic acetabulum, the presence of metaphyseal vertical striations, and/or the brachydactyly of the hand were also found to be highly correlated with the genotypes. The study confirms that MATN3 and COMP are the genes most frequently responsible for MED and that subtle radiographic signs may give precious indications on which gene(s) should be prioritized for mutational screening in a given individual.