885 resultados para Bayesian ridge regression
Resumo:
Several statistical models can be used for assessing genotype X environment interaction (GEI) and studying genotypic stability. The objectives of this research were to show how (i) to use Bayesian methodology for computing Shukla's phenotypic stability variance and (ii) to incorporate prior information on the parameters for better estimation. Potato [Solanum tuberosum subsp. andigenum (Juz. & Bukasov) Hawkes], wheat (Triticum aestivum L.), and maize (Zea mays L.) multi environment trials (MET) were used for illustrating the application of the Bayes paradigm. The potato trial included 15 genotypes, but prior information for just three genotypes was used. The wheat trial used prior information on all 10 genotypes included in the trial, whereas for the maize trial, noninformative priors for the nine genotypes was used. Concerning the posterior distribution of the genotypic means, the maize MET with 20 sites gave less disperse posterior distributions of the genotypic means than did the posterior distribution of the genotypic means of the other METs, which included fewer environments. The Bayesian approach allows use of other statistical strategies such as the normal truncated distribution (used in this study). When analyzing grain yield, a lower bound of zero and an upper bound set by the researcher's experience can be used. The Bayesian paradigm offers plant breeders the possibility of computing the probability of a genotype being the best performer. The results of this study show that although some genotypes may have a very low probability of being the best in all sites, they have a relatively good chance of being among the five highest yielding genotypes.
Resumo:
The Eastern Blue Ridge Province of the southern Appalachians contains, in part, remnants of an Ordovician accretionary wedge complex formed during subduction of an oceanic tract before mid-Ordovician accretion with Laurentia. The Eastern Blue Ridge Province consists of metapelite and amphibolite intruded by low-K plutons, high-temperature (T > 750 degrees C) Ordovician eclogite, and other high-pressure metamafic and meta-ultramatic rocks. Felsic plutons in the Eastern Blue Ridge Province are important time markers for regional-scale tectonics, deformation, and metamorphism. Plutons were thought to be related to either Taconian (Ordovician) or Acadian (Devonian-Silurian) tectonothermal events.We dated five plutonic or metaplutonic rocks to constrain pluton crystallization ages better and thus the timing of tectonism. The Persimmon Creek gneiss yielded a protolith crystallization age of 455.7 +/- 2.1 Ma, Chalk Mountain 377.7 +/- 2.5 Ma, Mt. Airy 334 +/- 3 Ma, Stone Mountain 335.6 +/- 1.0 Ma, and Rabun 335.1 +/- 2.8 Ma. The latter four plutons were thought to be part of the Acadian Spruce Pine Suite, but instead our new ages indicate that Alleghanian (Carboniferous-Permian) plutonism is widespread and voluminous in the Eastern Blue Ridge Province. The Chattahoochee fault, which was considered an Acadian structure, cuts the Rabun pluton and thus must have been active during the Alleghanian orogeny. The new ages indicate that Persimmon Creek crystallized less than 3 m.y. after zircon crystallization in Eastern Blue Ridge eclogite and is nearly synchronous with nearby high-grade metamorphism and migmatization. The three phases of plutonism in the Eastern Blue Ridge Province correspond with established metamorphic ages for each of the three major orogenic pulses along the western flank of the southern Appalachians.
Resumo:
A quantitative structure-activity relationship (QSAR) study of 19 quinone compounds with trypanocidal activity was performed by Partial Least Squares (PLS) and Principal Component Regression (PCR) methods with the use of leave-one-out crossvalidation procedure to build the regression models. The trypanocidal activity of the compounds is related to their first cathodic potential (Ep(c1)). The regression PLS and PCR models built in this study were also used to predict the Ep(c1) of six new quinone compounds. The PLS model was built with three principal components that described 96.50% of the total variance and present Q(2) = 0.83 and R-2 = 0.90. The results obtained with the PCR model were similar to those obtained with the PLS model. The PCR model was also built with three principal components that described 96.67% of the total variance with Q(2) = 0.83 and R-2 = 0.90. The most important descriptors for our PLS and PCR models were HOMO-1 (energy of the molecular orbital below HOMO), Q4 (atomic charge at position 4), MAXDN (maximal electrotopological negative difference), and HYF (hydrophilicity index).
Resumo:
Linear mixed effects models are frequently used to analyse longitudinal data, due to their flexibility in modelling the covariance structure between and within observations. Further, it is easy to deal with unbalanced data, either with respect to the number of observations per subject or per time period, and with varying time intervals between observations. In most applications of mixed models to biological sciences, a normal distribution is assumed both for the random effects and for the residuals. This, however, makes inferences vulnerable to the presence of outliers. Here, linear mixed models employing thick-tailed distributions for robust inferences in longitudinal data analysis are described. Specific distributions discussed include the Student-t, the slash and the contaminated normal. A Bayesian framework is adopted, and the Gibbs sampler and the Metropolis-Hastings algorithms are used to carry out the posterior analyses. An example with data on orthodontic distance growth in children is discussed to illustrate the methodology. Analyses based on either the Student-t distribution or on the usual Gaussian assumption are contrasted. The thick-tailed distributions provide an appealing robust alternative to the Gaussian process for modelling distributions of the random effects and of residuals in linear mixed models, and the MCMC implementation allows the computations to be performed in a flexible manner.
Resumo:
The quantitative structure-activity relationship of a set of 19 flavonoid compounds presenting antioxidant activity was studied by means of PLS (Partial Least Squares) regression. The optimization of the structures and calculation of electronic properties were done by using the semiempirical method AMI. A reliable model (r(2) = 0.806 and q(2) = 0.730) was obtained and from this model it was possible to consider some aspects of the structure of the flavonoid compounds studied that are related with their free radical scavenging ability. The quality of the PLS model obtained in this work indicates that it can be used in order to design new flavonoid compounds that present ability to scavenge free radicals.
Resumo:
Practical Bayesian inference depends upon detailed examination of posterior distribution. When the prior and likelihood are conjugate, this is easily carried out; however, in general, one must resort to numerical approximation. In this paper, our aim is to solve, using MAPLE, the Bayesian paradigm, for a very special data collecting procedure, known as the randomized-response technique. This allows researchers to obtain sensitive information while guaranteeing privacy to respondents. This approach intends to reduce false responses on sensitive questions. Exact methods and approximations will be compared from the accuracy point of view as well as for the computational effort.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Knowledge of genetic parameters is essential for improved reproductive management and increased yield. Quantitative analysis of genetic parameters is lacking for many breeds of buffaloes. This article provides the first estimate of genetic parameters for dual purpose (meat and milk) Brazilian Jaffarabadi buffaloes, using Bayesian inference. Data on milk yield (MY), lactation length (LL), weight at 205 days (W205) and 365 (W365) days of age, and average daily gain (ADG) from 205 to 365 days of age were collected in two herds. Bivariate analyses (using the program MTGSAM) were performed with the Gibbs sampler to obtain estimates of variance and covariance. Average lactation milk yield and lactation length were 1 620.2 +/- 450.9 kg and 257.6 +/- 46.8 days, respectively, and the mean values for weight traits (kg) were 181.6 +/- 63.3 (W205), 298.04 +/- 116.1 (W365), and 0.73 +/- 0.35 (ADG). Heritability estimates (modes) were 0.16 for MY, 0.10 for LL, 0.43 for W205, 0.48 for W365 and 0.32 for ADG. There was a high genetic correlation (0.96) between milk yield and lactation length and very high genetic correlations (0.99) between the three growth traits. Our data suggest that both milk production and growth traits have clear potential for yield improvement through direct selection in this dual purpose breed. The selection for weight at an early age would be successful and selection for MY can be performed in the first lactation.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
As a new modeling method, support vector regression (SVR) has been regarded as the state-of-the-art technique for regression and approximation. In this study, the SVR models had been introduced and developed to predict body and carcass-related characteristics of 2 strains of broiler chicken. To evaluate the prediction ability of SVR models, we compared their performance with that of neural network (NN) models. Evaluation of the prediction accuracy of models was based on the R-2, MS error, and bias. The variables of interest as model output were BW, empty BW, carcass, breast, drumstick, thigh, and wing weight in 2 strains of Ross and Cobb chickens based on intake dietary nutrients, including ME (kcal/bird per week), CP, TSAA, and Lys, all as grams per bird per week. A data set composed of 64 measurements taken from each strain were used for this analysis, where 44 data lines were used for model training, whereas the remaining 20 lines were used to test the created models. The results of this study revealed that it is possible to satisfactorily estimate the BW and carcass parts of the broiler chickens via their dietary nutrient intake. Through statistical criteria used to evaluate the performance of the SVR and NN models, the overall results demonstrate that the discussed models can be effective for accurate prediction of the body and carcass-related characteristics investigated here. However, the SVR method achieved better accuracy and generalization than the NN method. This indicates that the new data mining technique (SVR model) can be used as an alternative modeling tool for NN models. However, further reevaluation of this algorithm in the future is suggested.
Resumo:
The generalized exponential distribution, proposed by Gupta and Kundu (1999), is a good alternative to standard lifetime distributions as exponential, Weibull or gamma. Several authors have considered the problem of Bayesian estimation of the parameters of generalized exponential distribution, assuming independent gamma priors and other informative priors. In this paper, we consider a Bayesian analysis of the generalized exponential distribution by assuming the conventional non-informative prior distributions, as Jeffreys and reference prior, to estimate the parameters. These priors are compared with independent gamma priors for both parameters. The comparison is carried out by examining the frequentist coverage probabilities of Bayesian credible intervals. We shown that maximal data information prior implies in an improper posterior distribution for the parameters of a generalized exponential distribution. It is also shown that the choice of a parameter of interest is very important for the reference prior. The different choices lead to different reference priors in this case. Numerical inference is illustrated for the parameters by considering data set of different sizes and using MCMC (Markov Chain Monte Carlo) methods.