939 resultados para Audio signal
Resumo:
The standard models for statistical signal extraction assume that the signal and noise are generated by linear Gaussian processes. The optimum filter weights for those models are derived using the method of minimum mean square error. In the present work we study the properties of signal extraction models under the assumption that signal/noise are generated by symmetric stable processes. The optimum filter is obtained by the method of minimum dispersion. The performance of the new filter is compared with their Gaussian counterparts by simulation.
Resumo:
Interfacings of various subjects generate new field ofstudy and research that help in advancing human knowledge. One of the latest of such fields is Neurotechnology, which is an effective amalgamation of neuroscience, physics, biomedical engineering and computational methods. Neurotechnology provides a platform to interact physicist; neurologist and engineers to break methodology and terminology related barriers. Advancements in Computational capability, wider scope of applications in nonlinear dynamics and chaos in complex systems enhanced study of neurodynamics. However there is a need for an effective dialogue among physicists, neurologists and engineers. Application of computer based technology in the field of medicine through signal and image processing, creation of clinical databases for helping clinicians etc are widely acknowledged. Such synergic effects between widely separated disciplines may help in enhancing the effectiveness of existing diagnostic methods. One of the recent methods in this direction is analysis of electroencephalogram with the help of methods in nonlinear dynamics. This thesis is an effort to understand the functional aspects of human brain by studying electroencephalogram. The algorithms and other related methods developed in the present work can be interfaced with a digital EEG machine to unfold the information hidden in the signal. Ultimately this can be used as a diagnostic tool.
Resumo:
Any automatically measurable, robust and distinctive physical characteristic or personal trait that can be used to identify an individual or verify the claimed identity of an individual, referred to as biometrics, has gained significant interest in the wake of heightened concerns about security and rapid advancements in networking, communication and mobility. Multimodal biometrics is expected to be ultra-secure and reliable, due to the presence of multiple and independent—verification clues. In this study, a multimodal biometric system utilising audio and facial signatures has been implemented and error analysis has been carried out. A total of one thousand face images and 250 sound tracks of 50 users are used for training the proposed system. To account for the attempts of the unregistered signatures data of 25 new users are tested. The short term spectral features were extracted from the sound data and Vector Quantization was done using K-means algorithm. Face images are identified based on Eigen face approach using Principal Component Analysis. The success rate of multimodal system using speech and face is higher when compared to individual unimodal recognition systems
Resumo:
Presently different audio watermarking methods are available; most of them inclined towards copyright protection and copy protection. This is the key motive for the notion to develop a speaker verification scheme that guar- antees non-repudiation services and the thesis is its outcome. The research presented in this thesis scrutinizes the field of audio water- marking and the outcome is a speaker verification scheme that is proficient in addressing issues allied to non-repudiation to a great extent. This work aimed in developing novel audio watermarking schemes utilizing the fun- damental ideas of Fast-Fourier Transform (FFT) or Fast Walsh-Hadamard Transform (FWHT). The Mel-Frequency Cepstral Coefficients (MFCC) the best parametric representation of the acoustic signals along with few other key acoustic characteristics is employed in crafting of new schemes. The au- dio watermark created is entirely dependent to the acoustic features, hence named as FeatureMark and is crucial in this work. In any watermarking scheme, the quality of the extracted watermark de- pends exclusively on the pre-processing action and in this work framing and windowing techniques are involved. The theme non-repudiation provides immense significance in the audio watermarking schemes proposed in this work. Modification of the signal spectrum is achieved in a variety of ways by selecting appropriate FFT/FWHT coefficients and the watermarking schemes were evaluated for imperceptibility, robustness and capacity char- acteristics. The proposed schemes are unequivocally effective in terms of maintaining the sound quality, retrieving the embedded FeatureMark and in terms of the capacity to hold the mark bits. Robust nature of these marking schemes is achieved with the help of syn- chronization codes such as Barker Code with FFT based FeatureMarking scheme and Walsh Code with FWHT based FeatureMarking scheme. An- other important feature associated with this scheme is the employment of an encryption scheme towards the preparation of its FeatureMark that scrambles the signal features that helps to keep the signal features unreve- laed. A comparative study with the existing watermarking schemes and the ex- periments to evaluate imperceptibility, robustness and capacity tests guar- antee that the proposed schemes can be baselined as efficient audio water- marking schemes. The four new digital audio watermarking algorithms in terms of their performance are remarkable thereby opening more opportu- nities for further research.
Resumo:
The rapid growth in high data rate communication systems has introduced new high spectral efficient modulation techniques and standards such as LTE-A (long term evolution-advanced) for 4G (4th generation) systems. These techniques have provided a broader bandwidth but introduced high peak-to-average power ratio (PAR) problem at the high power amplifier (HPA) level of the communication system base transceiver station (BTS). To avoid spectral spreading due to high PAR, stringent requirement on linearity is needed which brings the HPA to operate at large back-off power at the expense of power efficiency. Consequently, high power devices are fundamental in HPAs for high linearity and efficiency. Recent development in wide bandgap power devices, in particular AlGaN/GaN HEMT, has offered higher power level with superior linearity-efficiency trade-off in microwaves communication. For cost-effective HPA design to production cycle, rigorous computer aided design (CAD) AlGaN/GaN HEMT models are essential to reflect real response with increasing power level and channel temperature. Therefore, large-size AlGaN/GaN HEMT large-signal electrothermal modeling procedure is proposed. The HEMT structure analysis, characterization, data processing, model extraction and model implementation phases have been covered in this thesis including trapping and self-heating dispersion accounting for nonlinear drain current collapse. The small-signal model is extracted using the 22-element modeling procedure developed in our department. The intrinsic large-signal model is deeply investigated in conjunction with linearity prediction. The accuracy of the nonlinear drain current has been enhanced through several issues such as trapping and self-heating characterization. Also, the HEMT structure thermal profile has been investigated and corresponding thermal resistance has been extracted through thermal simulation and chuck-controlled temperature pulsed I(V) and static DC measurements. Higher-order equivalent thermal model is extracted and implemented in the HEMT large-signal model to accurately estimate instantaneous channel temperature. Moreover, trapping and self-heating transients has been characterized through transient measurements. The obtained time constants are represented by equivalent sub-circuits and integrated in the nonlinear drain current implementation to account for complex communication signals dynamic prediction. The obtained verification of this table-based large-size large-signal electrothermal model implementation has illustrated high accuracy in terms of output power, gain, efficiency and nonlinearity prediction with respect to standard large-signal test signals.
Resumo:
Neben der Verbreitung von gefährlichen Krankheiten sind Insekten für enorme agrarwirtschaftliche Schäden verantwortlich. Ein Großteil der Verhaltensweisen bei Insekten wird über den Geruchssinn gesteuert, der somit einen möglichen Angriffspunkt zur Bekämpfung von Schadinsekten darstellt. Hierzu ist es allerdings nötig, die Mechanismen der olfaktorischen Signalübertragung im Detail zu verstehen. Neben den duftstoffbindenden olfaktorischen Rezeptoren spielt hier auch ein konservierter Korezeptor (Orco) eine entscheidende Rolle. Inwieweit bei diesen Proteinen ionotrope bzw. metabotrope Prozesse involviert sind ist bislang nicht vollständig aufgeklärt. Um weitere Einzelheiten aufzuklären wurden daher Einzelsensillenableitungen am Tabakschwärmer Manduca sexta durchgeführt. Orco-Agonisten und Antagonisten wurden eingesetzt, um die Funktion des Korezeptors besser zu verstehen. Bei dem Einsatz des Orco-Agonisten VUAA1 konnte keine Verstärkung der Pheromonantworten bzw. eine Sensitivierung beobachtet werden, wie im Falle einer ionotropen Signalweiterleitung zu erwarten gewesen wäre. Ein ionotroper Signalweg über den OR/Orco-Komplex in M. sexta ist daher unwahrscheinlich. Der Orco-Antagonist OLC15 beeinflusste die gleichen Parameter wie VUAA1 und konnte die von VUAA1 generierte Spontanaktivität blocken. Daher ist es wahrscheinlich, dass dieser einen spezifischen Orco-Blocker darstellt. Sowohl VUAA1 als auch OLC15 hatten großen Effekt auf die langanhaltende Pheromonantwort, welches die Vermutung nahelegt, dass Orco modulierend auf die Sensitivität der Nervenzelle einwirkt. Von OLC15 abweichende Effekte durch die getesteten Amiloride HMA und MIA auf die Pheromonantwort lassen nicht auf eine spezifische Wirkung dieser Agenzien auf Orco schließen und zusätzliche Wirkorte sind anzunehmen. Um die These eines metabotropen Signalwegs zu überprüfen wurde ebenfalls der G-Protein-Blocker GDP-β-S eingesetzt. Alle Parameter der Pheromonantwort die innerhalb der ersten Millisekunden analysiert wurden wiesen eine Reduktion der Sensitivität auf. Im Gegensatz dazu hatte GDP-β-S keinen Effekt auf die langanhaltende Pheromonantwort. Somit scheint ausschließlich die schnelle Pheromonantwort über einen Ligand-bindenden G-Protein-gesteuerten Rezeptor gesteuert zu werden.
Resumo:
Surface (Lambertain) color is a useful visual cue for analyzing material composition of scenes. This thesis adopts a signal processing approach to color vision. It represents color images as fields of 3D vectors, from which we extract region and boundary information. The first problem we face is one of secondary imaging effects that makes image color different from surface color. We demonstrate a simple but effective polarization based technique that corrects for these effects. We then propose a systematic approach of scalarizing color, that allows us to augment classical image processing tools and concepts for multi-dimensional color signals.
Resumo:
Aquest llibre és el producte d'anys de cooperació entre equips de recerca de cinc països diferents, tot ells Key Institutions de la xarxa Childwatch International, en el marc d'un projecte plurinacional sobre adolescents i mitjans
Resumo:
Resumen tomado de la publicación
Resumo:
There is a wealth of open educational content in audio and video formats available via iTunes U, one of the services offered especially for education via iTunes. There are details of how to get started as well as an informative video to help you. Details of how to get started with sharing content can be found for developers.
Resumo:
Resumen tomado de la publicación. Artículo seleccionado de RIBIE (Rede Iberoamericana de Informática Educativa) 2004, extendido y revisado para su publicación en IE Comunicaciones
Resumo:
Audio of What is the consumer? What is the reader? lecture delivered by Dr Cui Su and Paul Caplan as part of #WSAmacd and #WSAadm remix course