992 resultados para Atmospheric Chemistry, Ozone, Nitrogen oxides, Marine boundary layer, Photochemistry
Resumo:
The increasing nationwide interest in intelligent transportation systems (ITS) and the need for more efficient transportation have led to the expanding use of variable message sign (VMS) technology. VMS panels are substantially heavier than flat panel aluminum signs and have a larger depth (dimension parallel to the direction of traffic). The additional weight and depth can have a significant effect on the aerodynamic forces and inertial loads transmitted to the support structure. The wind induced drag forces and the response of VMS structures is not well understood. Minimum design requirements for VMS structures are contained in the American Association of State Highway Transportation Officials Standard Specification for Structural Support for Highway Signs, Luminaires, and Traffic Signals (AASHTO Specification). However the Specification does not take into account the prismatic geometry of VMS and the complex interaction of the applied aerodynamic forces to the support structure. In view of the lack of code guidance and the limited number research performed so far, targeted experimentation and large scale testing was conducted at the Florida International University (FIU) Wall of Wind (WOW) to provide reliable drag coefficients and investigate the aerodynamic instability of VMS. A comprehensive range of VMS geometries was tested in turbulence representative of the high frequency end of the spectrum in a simulated suburban atmospheric boundary layer. The mean normal, lateral and vertical lift force coefficients, in addition to the twisting moment coefficient and eccentricity ratio, were determined using the measured data for each model. Wind tunnel testing confirmed that drag on a prismatic VMS is smaller than the 1.7 suggested value in the current AASHTO Specification (2013). An alternative to the AASHTO Specification code value is presented in the form of a design matrix. Testing and analysis also indicated that vortex shedding oscillations and galloping instability could be significant for VMS signs with a large depth ratio attached to a structure with a low natural frequency. The effect of corner modification was investigated by testing models with chamfered and rounded corners. Results demonstrated an additional decrease in the drag coefficient but a possible Reynolds number dependency for the rounded corner configuration.
Resumo:
Eyewall replacement cycle (ERC) is frequently observed during the evolution of intensifying Tropical Cyclones (TCs). Although intensely studied in recent years, the underlying mechanisms of ERC are still poorly understood, and the forecast of ERC remains a great challenge. To advance our understanding of ERC and provide insights in improvement of numerical forecast of ERC, a series of numerical simulations is performed to investigate ERCs in TC-like vortices on a f-plane. The simulated ERCs possess key features similar to those observed in real TCs including the formation of a secondary tangential wind maximum associated with the outer eyewall. The Sawyer-Eliassen equation and tangential momentum budget analyses are performed to diagnose the mechanisms underlying the secondary eyewall formation (SEF) and ERC. Our diagnoses reveal crucial roles of outer rainband heating in governing the formation and development of the secondary tangential wind maximum and demonstrate that the outer rainband convection must reach a critical strength relative to the eyewall before SEF and the subsequent ERC can occur. A positive feedback among low-level convection, acceleration of tangential winds in the boundary layer, and surface evaporation that leads to the development of ERC and a mechanism for the demise of inner eyewall that involves interaction between the transverse circulations induced by eyewall and outer rainband convection are proposed. The tangential momentum budget indicates that the net tendency of tangential wind is a small residual resultant from a large cancellation between tendencies induced by the resolved and sub-grid scale (SGS) processes. The large SGS contribution to the tangential wind budget explains different characteristics of ERC shown in previous numerical studies and poses a great challenge for a timely correct forecast of ERC. The sensitivity experiments show that ERCs are strongly subjected to model physics, vortex radial structure and background wind. The impact of model physics on ERC can be well understood with the interaction among eyewall/outer rainband heating, radilal inflow in the boundary layer, surface layer turbulent processes, and shallow convection in the moat. However, further investigations are needed to fully understand the exhibited sensitivities of ERC to vortex radial structure and background wind.
Resumo:
Critical bed shear stress for incipient motion has been determined for biogenic free-living coralline algae known as maërl. Maërl from three different sedimentary environments (beach, intertidal, and open marine) in Galway Bay, west of Ireland have been analysed in a rotating annular flume and linear flume. Velocity profile measurements of the benthic boundary layer, using an Acoustic Doppler Velocimeter, have been obtained in four different velocity experiments. The bed shear stress has been determined using three methods: Law of the Wall, Turbulent Kinetic Energy and Reynolds Stress. The critical Shields parameter has been estimated as a non-dimensional mobility number and the results have been compared with the Shields curve for natural sand. Maërl particles fall below this curve because its greater angularity allows grains to be mobilised easier than hydraulically equivalent particles. From previous work, the relationship between grain shape and the settling velocity of maërl suggests that the roughness is greatest for intertidal maërl particles. During critical shear stress determinations, beds of such rough particles exhibited the greatest critical shear stress probably because the particle thalli interlocked and resisted entrainment. The Turbulent Kinetic Energy methodology gives the most consistent results, agreeing with previous comparative studies. Rarely-documented maërl megaripples were observed in the rotating annular flume and are hypothesised to form at velocities ~10 cm s-1 higher than the critical threshold velocity, where tidal currents, oscillatory flow or combined-wave current interaction results in the preferential transport of maërl. A determination of the critical bed shear stress of maërl allows its mobility and rate of erosion and deposition to be evaluated spatially in subsequent applications to biological conservation management.
Resumo:
Sixty surface sediment samples from the eastern South Atlantic Ocean including the Walvis Ridge, the Angola and Cape basins, and the Southwest African continental margin were analysed for their benthic foraminiferal content to unravel faunal distribution patterns and ecological preferences. Live (stained with Rose Bengal) and dead faunas were counted separately and then each grouped by Q-mode principal component analysis into seven principal faunal end-members. Then, multiple regression technique was used to correlate Recent assemblages with available environmental variables and to finally differentiate between four principal groups of environmental agents acting upon the generation of benthic foraminiferal assemblages: (1) seasonality of food supply and organic carbon flux rates, together with oxygen content in the pore and bottom waters; (2) lateral advection of deep-water masses; (3) bottom water carbonate corrosiveness; and (4) energetic state at the benthic boundary layer and grain size composition of the substrate. Food supply and corresponding dissolved oxygen contents in the pore and bottom waters turned out to be the most important factors which control the distribution pattern of the Recent benthic foraminifera. At the continental margin, in the zone of coastal upwelling and its mixing area, benthic foraminiferal assemblages are dominated by stenobathic high-productivity faunas, characterized by elevated standing stocks, low diversities and a large number of endobenthic living species. At the continental shelf and upper continental slope the live assemblages are characterized by Rectuvigerina cylindrica, Uvigerina peregrina s.1., Uvigerina auberiana and Rhizammina spp. while the dead assemblages are characterized by Cassidulina laevigata, Bolivina dilatata, Bulimina costata and B. mexicana. At the lower continental slope strong influence of high organic matter fluxes on the species composition is restricted to the area off the Cunene river mouth, where the live assemblage is dominated by Uvigerina peregrina s.1., the corresponding dead assemblage by Melonis barleeanum and M. zaandamae. In the adjacent areas of the lower continental slope the biocoenosis is characterized by Reophax bilocularis, and Epistominella exigua which becomes dominant in the corresponding dead assemblage. At the Walvis Ridge and in the abyssal Angola and Cape basins, where organic matter fluxes are low and highly seasonal, benthic foraminiferal assemblages reflect both the oligotrophic situation and the deep and bottom water mass configuration. The top and flanks of the Walvis Ridge are inhabited by the Rhizammina, Psammosphaera and R. bilocularis live assemblages, the corresponding dead assemblages are dominated by G. subglobosa on the ridge top and E. exigua on the flanks. Within the highly diverse E. exigua dead assemblage several associated epibenthic species coincide with the core of NADW between about 1600 and 3700 m water depth. These species include Osangularia culter, Cibicidoides kullenbergi, Melonis pompilioides, Bolivinita pseudothalmanni and Bulimina alazanensis. The assemblages of the abyssal Cape and Angola basins are characterized by Nuttallides umbonifer and a high proportion of agglutinated species. These species are adapted to very low organic matter fluxes and a carbonate corrosive environment.
Resumo:
The first long-term aerosol sampling and chemical characterization results from measurements at the Cape Verde Atmospheric Observatory (CVAO) on the island of São Vicente are presented and are discussed with respect to air mass origin and seasonal trends. In total 671 samples were collected using a high-volume PM10 sampler on quartz fiber filters from January 2007 to December 2011. The samples were analyzed for their aerosol chemical composition, including their ionic and organic constituents. Back trajectory analyses showed that the aerosol at CVAO was strongly influenced by emissions from Europe and Africa, with the latter often responsible for high mineral dust loading. Sea salt and mineral dust dominated the aerosol mass and made up in total about 80% of the aerosol mass. The 5-year PM10 mean was 47.1 ± 55.5 µg/m**2, while the mineral dust and sea salt means were 27.9 ± 48.7 and 11.1 ± 5.5 µg/m**2, respectively. Non-sea-salt (nss) sulfate made up 62% of the total sulfate and originated from both long-range transport from Africa or Europe and marine sources. Strong seasonal variation was observed for the aerosol components. While nitrate showed no clear seasonal variation with an annual mean of 1.1 ± 0.6 µg/m**3, the aerosol mass, OC (organic carbon) and EC (elemental carbon), showed strong winter maxima due to strong influence of African air mass inflow. Additionally during summer, elevated concentrations of OM were observed originating from marine emissions. A summer maximum was observed for non-sea-salt sulfate and was connected to periods when air mass inflow was predominantly of marine origin, indicating that marine biogenic emissions were a significant source. Ammonium showed a distinct maximum in spring and coincided with ocean surface water chlorophyll a concentrations. Good correlations were also observed between nss-sulfate and oxalate during the summer and winter seasons, indicating a likely photochemical in-cloud processing of the marine and anthropogenic precursors of these species. High temporal variability was observed in both chloride and bromide depletion, differing significantly within the seasons, air mass history and Saharan dust concentration. Chloride (bromide) depletion varied from 8.8 ± 8.5% (62 ± 42%) in Saharan-dust-dominated air mass to 30 ± 12% (87 ± 11%) in polluted Europe air masses. During summer, bromide depletion often reached 100% in marine as well as in polluted continental samples. In addition to the influence of the aerosol acidic components, photochemistry was one of the main drivers of halogenide depletion during the summer; while during dust events, displacement reaction with nitric acid was found to be the dominant mechanism. Positive matrix factorization (PMF) analysis identified three major aerosol sources: sea salt, aged sea salt and long-range transport. The ionic budget was dominated by the first two of these factors, while the long-range transport factor could only account for about 14% of the total observed ionic mass.
Resumo:
In many countries wind energy has become an indispensable part of the electricity generation mix. The opportunity for ground based wind turbine systems are becoming more and more constrained due to limitations on turbine hub heights, blade lengths and location restrictions linked to environmental and permitting issues including special areas of conservation and social acceptance due to the visual and noise impacts. In the last decade there have been numerous proposals to harness high altitude winds, such as tethered kites, airfoils and dirigible based rotors. These technologies are designed to operate above the neutral atmospheric boundary layer of 1,300 m, which are subject to more powerful and persistent winds thus generating much higher electricity capacities. This paper presents an in-depth review of the state-of-the-art of high altitude wind power, evaluates the technical and economic viability of deploying high altitude wind power as a resource in Northern Ireland and identifies the optimal locations through considering wind data and geographical constraints. The key findings show that the total viable area over Northern Ireland for high altitude wind harnessing devices is 5109.6 km2, with an average wind power density of 1,998 W/m2 over a 20-year span, at a fixed altitude of 3,000 m. An initial budget for a 2MW pumping kite device indicated a total cost £1,751,402 thus proving to be economically viable with other conventional wind-harnessing devices.
Resumo:
Hydroxyl radical (OH) is the primary oxidant in the troposphere, initiating the removal of numerous atmospheric species including greenhouse gases, pollutants that are detrimental to human health, and ozone-depleting substances. Because of the complexity of OH chemistry, models vary widely in their OH chemistry schemes and resulting methane (CH4) lifetimes. The current state of knowledge concerning global OH abundances is often contradictory. This body of work encompasses three projects that investigate tropospheric OH from a modeling perspective, with the goal of improving the tropospheric community’s knowledge of the atmospheric lifetime of CH4. First, measurements taken during the airborne CONvective TRansport of Active Species in the Tropics (CONTRAST) field campaign are used to evaluate OH in global models. A box model constrained to measured variables is utilized to infer concentrations of OH along the flight track. Results are used to evaluate global model performance, suggest against the existence of a proposed “OH Hole” in the tropical Western Pacific, and investigate implications of high O3/low H2O filaments on chemical transport to the stratosphere. While methyl chloroform-based estimates of global mean OH suggest that models are overestimating OH, we report evidence that these models are actually underestimating OH in the tropical Western Pacific. The second project examines OH within global models to diagnose differences in CH4 lifetime. I developed an approach to quantify the roles of OH precursor field differences (O3, H2O, CO, NOx, etc.) using a neural network method. This technique enables us to approximate the change in CH4 lifetime resulting from variations in individual precursor fields. The dominant factors driving CH4 lifetime differences between models are O3, CO, and J(O3-O1D). My third project evaluates the effect of climate change on global fields of OH using an empirical model. Observations of H2O and O3 from satellite instruments are combined with a simulation of tropical expansion to derive changes in global mean OH over the past 25 years. We find that increasing H2O and increasing width of the tropics tend to increase global mean OH, countering the increasing CH4 sink and resulting in well-buffered global tropospheric OH concentrations.
Resumo:
In this study the relationship between heterogeneous nucleate boiling surfaces and deposition of suspended metallic colloidal particles, popularly known as crud or corrosion products in process industries, on those heterogeneous sites is investigated. Various researchers have reported that hematite is a major constituent of crud which makes it the primary material of interest; however the models developed in this work are irrespective of material choice. Qualitative hypotheses on the deposition process under boiling as proposed by previous researchers have been tested, which fail to provide explanations for several physical mechanisms observed and analyzed. In this study a quantitative model of deposition rate has been developed on the basis of bubble dynamics and colloid-surface interaction potential. Boiling from a heating surface aids in aggregation of the metallic particulates viz. nano-particles, crud particulate, etc. suspended in a liquid, which helps in transporting them to heating surfaces. Consequently, clusters of particles deposit onto the heating surfaces due to various interactive forces, resulting in formation of porous or impervious layers. The deposit layer grows or recedes depending upon variations in interparticle and surface forces, fluid shear, fluid chemistry, etc. This deposit layer in turn affects the rate of bubble generation, formation of porous chimneys, critical heat flux (CHF) of surfaces, activation and deactivation of nucleation sites on the heating surfaces. Several problems are posed due to the effect of boiling on colloidal deposition, which range from research initiatives involving nano-fluids as a heat transfer medium to industrial applications such as light water nuclear reactors. In this study, it is attempted to integrate colloid and surface science with vapor bubble dynamics, boiling heat transfer and evaporation rate. Pool boiling experiments with dilute metallic colloids have been conducted to investigate several parameters impacting the system. The experimental data available in the literature is obtained by flow experiments, which do not help in correlating boiling mechanism with the deposition amount or structure. With the help of experimental evidences and analysis, previously proposed hypothesis for particle transport to the contact line due to hydrophobicity has been challenged. The experimental observations suggest that deposition occurs around the bubble surface contact line and extends underneath area of the bubble microlayer as well. During the evaporation the concentration gradient of a non-volatile species is created, which induces osmotic pressure. The osmotic pressure developed inside the microlayer draws more particles inside the microlayer region or towards contact line. The colloidal escape time is slower than the evaporation time, which leads to the aggregation of particles in the evaporating micro-layer. These aggregated particles deposit onto or are removed from the heating surface, depending upon their total interaction potential. Interaction potential has been computed with the help of surface charge and van der Waals potential for the materials in aqueous solutions. Based upon the interaction-force boundary layer thickness, which is governed by debye radius (or ionic concentration and pH), a simplified quantitative model for the attachment kinetics is proposed. This attachment kinetics model gives reasonable results in predicting attachment rate against data reported by previous researchers. The attachment kinetics study has been done for different pH levels and particle sizes for hematite particles. Quantification of colloidal transport under boiling scenarios is done with the help of overall average evaporation rates because generally waiting times for bubbles at the same position is much larger than growth times. In other words, from a larger measurable scale perspective, frequency of bubbles dictates the rate of collection of particles rather than evaporation rate during micro-layer evaporation of one bubble. The combination of attachment kinetics and colloidal transport kinetics has been used to make a consolidated model for prediction of the amount of deposition and is validated with the help of high fidelity experimental data. In an attempt to understand and explain boiling characteristics, high speed visualization of bubble dynamics from a single artificial large cavity and multiple naturally occurring cavities is conducted. A bubble growth and departure dynamics model is developed for artificial active sites and is validated with the experimental data. The variation of bubble departure diameter with wall temperature is analyzed with experimental results and shows coherence with earlier studies. However, deposit traces after boiling experiments show that bubble contact diameter is essential to predict bubble departure dynamics, which has been ignored previously by various researchers. The relationship between porosity of colloid deposits and bubbles under the influence of Jakob number, sub-cooling and particle size has been developed. This also can be further utilized in variational wettability of the surface. Designing porous surfaces can having vast range of applications varying from high wettability, such as high critical heat flux boilers, to low wettability, such as efficient condensers.
Resumo:
As the formative agents of cloud droplets, aerosols play an undeniably important role in the development of clouds and precipitation. Few meteorological models have been developed or adapted to simulate aerosols and their contribution to cloud and precipitation processes. The Weather Research and Forecasting model (WRF) has recently been coupled with an atmospheric chemistry suite and is jointly referred to as WRF-Chem, allowing atmospheric chemistry and meteorology to influence each other’s evolution within a mesoscale modeling framework. Provided that the model physics are robust, this framework allows the feedbacks between aerosol chemistry, cloud physics, and dynamics to be investigated. This study focuses on the effects of aerosols on meteorology, specifically, the interaction of aerosol chemical species with microphysical processes represented within the framework of the WRF-Chem. Aerosols are represented by eight size bins using the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) sectional parameterization, which is linked to the Purdue Lin bulk microphysics scheme. The aim of this study is to examine the sensitivity of deep convective precipitation modeled by the 2D WRF-Chem to varying aerosol number concentration and aerosol type. A systematic study has been performed regarding the effects of aerosols on parameters such as total precipitation, updraft/downdraft speed, distribution of hydrometeor species, and organizational features, within idealized maritime and continental thermodynamic environments. Initial results were obtained using WRFv3.0.1, and a second series of tests were run using WRFv3.2 after several changes to the activation, autoconversion, and Lin et al. microphysics schemes added by the WRF community, as well as the implementation of prescribed vertical levels by the author. The results of WRFv3.2 runs contrasted starkly with WRFv3.0.1 runs. The WRFv3.0.1 runs produced a propagating system resembling a developing squall line, whereas the WRFv3.2 runs did not. The response of total precipitation, updraft/downdraft speeds, and system organization to increasing aerosol concentrations were opposite between runs with different versions of WRF. Results of the WRFv3.2 runs, however, were in better agreement in timing and magnitude of vertical velocity and hydrometeor content with a WRFv3.0.1 run using single-moment Lin et al. microphysics, than WRFv3.0.1 runs with chemistry. One result consistent throughout all simulations was an inhibition in warm-rain processes due to enhanced aerosol concentrations, which resulted in a delay of precipitation onset that ranged from 2-3 minutes in WRFv3.2 runs, and up to 15 minutes in WRFv.3.0.1 runs. This result was not observed in a previous study by Ntelekos et al. (2009) using the WRF-Chem, perhaps due to their use of coarser horizontal and vertical resolution within their experiment. The changes to microphysical processes such as activation and autoconversion from WRFv3.0.1 to WRFv3.2, along with changes in the packing of vertical levels, had more impact than the varying aerosol concentrations even though the range of aerosol tested was greater than that observed in field studies. In order to take full advantage of the input of aerosols now offered by the chemistry module in WRF, the author recommends that a fully double-moment microphysics scheme be linked, rather than the limited double-moment Lin et al. scheme that currently exists. With this modification, the WRF-Chem will be a powerful tool for studying aerosol-cloud interactions and allow comparison of results with other studies using more modern and complex microphysical parameterizations.
Resumo:
Simulations of droplet dispersion behind cylinder wakes and downstream of icing tunnel spray bars were conducted. In both cases, a range of droplet sizes were investigated numerically with a Lagrangian particle trajectory approach while the turbulent air flow was investigated with a hybrid Reynolds-Averaged Navier-Stokes/Large-Eddy Simulations approach scheme. In the first study, droplets were injected downstream of a cylinder at sub-critical conditions (i.e. with laminar boundary layer separation). A stochastic continuous random walk (CRW) turbulence model was used to capture the effects of sub-grid turbulence. Small inertia droplets (characterized by small Stokes numbers) were affected by both the large-scale and small-scale vortex structures and closely followed the air flow, while exhibiting a dispersion consistent with that of a scalar flow field. Droplets with intermediate Stokes numbers were centrifuged by the vortices to the outer edges of the wake, yielding an increased dispersion. Large Stokes number droplets were found to be less responsive to the vortex structures and exhibited the least dispersion. Particle concentration was also correlated with vorticity distribution which yielded preferential bias effects as a function of different particle sizes. This trend was qualitatively similar to results seen in homogenous isotropic turbulence, though the influence of particle inertia was less pronounced for the cylinder wake case. A similar study was completed for droplet dispersion within the Icing Research Tunnel (IRT) at the NASA Glenn Research Center, where it is important to obtain a nearly uniform liquid water content (LWC) distribution in the test section (to recreate atmospheric icing conditions).. For this goal, droplets are diffused by the mean and turbulent flow generated from the nozzle air jets, from the upstream spray bars, and from the vertical strut wakes. To understand the influence of these three components, a set of simulations was conducted with a sequential inclusion of these components. Firstly, a jet in an otherwise quiescent airflow was simulated to capture the impact of the air jet on flow turbulence and droplet distribution, and the predictions compared well with experimental results. The effects of the spray bar wake and vertical strut wake were then included with two more simulation conditions, for which it was found that the air jets were the primary driving force for droplet dispersion, i.e. that the spray bar and vertical strut wake effects were secondary.