872 resultados para At-Fault crashes
Resumo:
The study reported here, constitutes a full review of the major geological events that have influenced the morphological development of the southeast Queensland region. Most importantly, it provides evidence that the region’s physiography continues to be geologically ‘active’ and although earthquakes are presently few and of low magnitude, many past events and tectonic regimes continue to be strongly influential over drainage, morphology and topography. Southeast Queensland is typified by highland terrain of metasedimentary and igneous rocks that are parallel and close to younger, lowland coastal terrain. The region is currently situated in a passive margin tectonic setting that is now under compressive stress, although in the past, the region was subject to alternating extensional and compressive regimes. As part of the investigation, the effects of many past geological events upon landscape morphology have been assessed at multiple scales using features such as the location and orientation of drainage channels, topography, faults, fractures, scarps, cleavage, volcanic centres and deposits, and recent earthquake activity. A number of hypotheses for local geological evolution are proposed and discussed. This study has also utilised a geographic information system (GIS) approach that successfully amalgamates the various types and scales of datasets used. A new method of stream ordination has been developed and is used to compare the orientation of channels of similar orders with rock fabric, in a topologically controlled approach that other ordering systems are unable to achieve. Stream pattern analysis has been performed and the results provide evidence that many drainage systems in southeast Queensland are controlled by known geological structures and by past geological events. The results conclude that drainage at a fine scale is controlled by cleavage, joints and faults, and at a broader scale, large river valleys, such as those of the Brisbane River and North Pine River, closely follow the location of faults. These rivers appear to have become entrenched by differential weathering along these planes of weakness. Significantly, stream pattern analysis has also identified some ‘anomalous’ drainage that suggests the orientations of these watercourses are geologically controlled, but by unknown causes. To the north of Brisbane, a ‘coastal drainage divide’ has been recognized and is described here. The divide crosses several lithological units of different age, continues parallel to the coast and prevents drainage from the highlands flowing directly to the coast for its entire length. Diversion of low order streams away from the divide may be evidence that a more recent process may be the driving force. Although there is no conclusive evidence for this at present, it is postulated that the divide may have been generated by uplift or doming associated with mid-Cenozoic volcanism or a blind thrust at depth. Also north of Brisbane, on the D’Aguilar Range, an elevated valley (the ‘Kilcoy Gap’) has been identified that may have once drained towards the coast and now displays reversed drainage that may have resulted from uplift along the coastal drainage divide and of the D’Aguilar blocks. An assessment of the distribution and intensity of recent earthquakes in the region indicates that activity may be associated with ancient faults. However, recent movement on these faults during these events would have been unlikely, given that earthquakes in the region are characteristically of low magnitude. There is, however, evidence that compressive stress is building and being released periodically and ancient faults may be a likely place for this stress to be released. The relationship between ancient fault systems and the Tweed Shield Volcano has also been discussed and it is suggested here that the volcanic activity was associated with renewed faulting on the Great Moreton Fault System during the Cenozoic. The geomorphology and drainage patterns of southeast Queensland have been compared with expected morphological characteristics found at passive and other tectonic settings, both in Australia and globally. Of note are the comparisons with the East Brazilian Highlands, the Gulf of Mexico and the Blue Ridge Escarpment, for example. In conclusion, the results of the study clearly show that, although the region is described as a passive margin, its complex, past geological history and present compressive stress regime provide a more intricate and varied landscape than would be expected along typical passive continental margins. The literature review provides background to the subject and discusses previous work and methods, whilst the findings are presented in three peer-reviewed, published papers. The methods, hypotheses, suggestions and evidence are discussed at length in the final chapter.
Resumo:
This paper describes protection and control of a microgrid with converter interfaced micro sources. The proposed protection and control scheme consider both grid connected and autonomous operation of the microgrid. A protection scheme, capable of detecting faults effectively in both grid connected and islanded operations is proposed. The main challenge of the protection, due to current limiting state of the converters is overcome by using admittance relays. The relays operate according to the inverse time characteristic based on measured admittance of the line. The proposed scheme isolates the fault from both sides, while downstream side of the microgrid operates in islanding condition. Moreover faults can be detected in autonomous operation. In grid connected mode distributed generators (DG) supply the rated power while in absence of the grid, DGs share the entire power requirement proportional to rating based on output voltage angle droop control. The protection scheme ensures minimum load shedding with isolating the faulted network and DG control provides a smooth islanding and resynchronization operation. The efficacy of coordinated control and protection scheme has been validated through simulation for various operating conditions.
Resumo:
Motorised countries have more fatal road crashes in rural areas than in urban areas. In Australia, over two thirds of the population live in urban areas, yet approximately 55 percent of the road fatalities occur in rural areas (ABS, 2006; Tziotis, Mabbot, Edmonston, Sheehan & Dwyer, 2005). Road and environmental factors increase the challenges of rural driving, but do not fully account for the disparity. Rural drivers are less compliant with recommendations regarding the “fatal four” behaviours of speeding, drink driving, seatbelt non-use and fatigue, and the reasons for their lower apparent receptivity for road safety messages are not well understood. Countermeasures targeting driver behaviour that have been effective in reducing road crashes in urban areas have been less successful in rural areas (FORS, 1995). However, potential barriers to receptivity for road safety information among rural road users have not been systematically investigated. This thesis aims to develop a road safety countermeasure that addresses three areas that potentially affect receptivity to rural road safety information. The first is psychological barriers of road users’ attitudes, including risk evaluation, optimism bias, locus of control and readiness to change. A second area is the timing and method of intervention delivery, which includes the production of a brief intervention and the feasibility of delivering it at a “teachable moment”. The third area under investigation is the content of the brief intervention. This study describes the process of developing an intervention that includes content to address road safety attitudes and improve safety behaviours of rural road users regarding the “fatal four”. The research commences with a review of the literature on rural road crashes, brief interventions, intervention design and implementation, and potential psychological barriers to receptivity. This literature provides a rationale for the development of a brief intervention for rural road safety with a focus on driver attitudes and behaviour. The research is then divided into four studies. The primary aim of Study One and Study Two is to investigate the receptivity of rural drivers to road safety interventions, with a view to identifying barriers to the efficacy of these strategies.
Resumo:
Policy decisions are frequently influenced by more than research results alone. This review examines one road safety countermeasure, graduated driver licensing, in three jurisdictions and identifies how the conflict between mobility and safety goals can influence policy decisions relating to this countermeasure. Evaluations from around the world of graduated driver licensing have demonstrated clear reductions in crashes for young drivers. However, the introduction of this countermeasure may be affected, both positively and negatively, by the conflict some policy makers experience between ensuring individuals remain both mobile and safe as drivers. This review highlights how this conflict in policy decision making can serve to either facilitate or hinder the introduction of graduated driver licensing systems. However, policy makers whose focus on mobility is too strong when compared with safety may be mistaken, with evidence suggesting that after a graduated driver licensing system is introduced young drivers adapt their behaviour to the new system and remain mobile. As a result, policy makers should consciously acknowledge the conflict between mobility and safety and consider an appropriate balance in order to introduce these systems. Improvements to the licensing system can then be made in an incremental manner as the balance between these two priorities change. Policy makers can achieve an appropriate balance by using empirical evidence as a basis for their decisions.
Resumo:
This paper proposes a method for power flow control between utility and microgrid through back-to-back converters, which facilitates desired real and reactive power flow between utility and microgrid. In the proposed control strategy, the system can run in two different modes depending on the power requirement in the microgrid. In mode-1, specified amount of real and reactive power are shared between the utility and the microgrid through the back-to-back converters. Mode-2 is invoked when the power that can be supplied by the DGs in the microgrid reaches its maximum limit. In such a case, the rest of the power demand of the microgrid has to be supplied by the utility. An arrangement between DGs in the microgrid is proposed to achieve load sharing in both grid connected and islanded modes. The back-to-back converters also provide total frequency isolation between the utility and the microgrid. It is shown that the voltage or frequency fluctuation in the utility side has no impact on voltage or power in microgrid side. Proper relay-breaker operation coordination is proposed during fault along with the blocking of the back-to-back converters for seamless resynchronization. Both impedance and motor type loads are considered to verify the system stability. The impact of dc side voltage fluctuation of the DGs and DG tripping on power sharing is also investigated. The efficacy of the proposed control ar-rangement has been validated through simulation for various operating conditions. The model of the microgrid power system is simulated in PSCAD.
Resumo:
In this thesis, a new technique has been developed for determining the composition of a collection of loads including induction motors. The application would be to provide a representation of the dynamic electrical load of Brisbane so that the ability of the power system to survive a given fault can be predicted. Most of the work on load modelling to date has been on post disturbance analysis, not on continuous on-line models for loads. The post disturbance methods are unsuitable for load modelling where the aim is to determine the control action or a safety margin for a specific disturbance. This thesis is based on on-line load models. Dr. Tania Parveen considers 10 induction motors with different power ratings, inertia and torque damping constants to validate the approach, and their composite models are developed with different percentage contributions for each motor. This thesis also shows how measurements of a composite load respond to normal power system variations and this information can be used to continuously decompose the load continuously and to characterize regarding the load into different sizes and amounts of motor loads.
Resumo:
In a power network, when a propagation energy wave caused by a disturbance hits a weak link, a reflection is appeared and some of energy is transferred across the link. In this work, an analytical descriptive methodology is proposed to study the dynamical stability of a large scale power system. For this purpose, the measured electrical indices (angle, or voltage/frequency) following a fault in different points among the network are used, and the behaviors of the propagated waves through the lines, nodes and buses are studied. This work addresses a new tool for power system stability analysis based on a descriptive study of electrical measurements. The proposed methodology is also useful to detect the contingency condition and synthesis of an effective emergency control scheme.
Resumo:
Road curves are an important feature of road infrastructure and many serious crashes occur on road curves. In Queensland, the number of fatalities is twice as many on curves as that on straight roads. Therefore, there is a need to reduce drivers’ exposure to crash risk on road curves. Road crashes in Australia and in the Organisation for Economic Co-operation and Development(OECD) have plateaued in the last five years (2004 to 2008) and the road safety community is desperately seeking innovative interventions to reduce the number of crashes. However, designing an innovative and effective intervention may prove to be difficult as it relies on providing theoretical foundation, coherence, understanding, and structure to both the design and validation of the efficiency of the new intervention. Researchers from multiple disciplines have developed various models to determine the contributing factors for crashes on road curves with a view towards reducing the crash rate. However, most of the existing methods are based on statistical analysis of contributing factors described in government crash reports. In order to further explore the contributing factors related to crashes on road curves, this thesis designs a novel method to analyse and validate these contributing factors. The use of crash claim reports from an insurance company is proposed for analysis using data mining techniques. To the best of our knowledge, this is the first attempt to use data mining techniques to analyse crashes on road curves. Text mining technique is employed as the reports consist of thousands of textual descriptions and hence, text mining is able to identify the contributing factors. Besides identifying the contributing factors, limited studies to date have investigated the relationships between these factors, especially for crashes on road curves. Thus, this study proposed the use of the rough set analysis technique to determine these relationships. The results from this analysis are used to assess the effect of these contributing factors on crash severity. The findings obtained through the use of data mining techniques presented in this thesis, have been found to be consistent with existing identified contributing factors. Furthermore, this thesis has identified new contributing factors towards crashes and the relationships between them. A significant pattern related with crash severity is the time of the day where severe road crashes occur more frequently in the evening or night time. Tree collision is another common pattern where crashes that occur in the morning and involves hitting a tree are likely to have a higher crash severity. Another factor that influences crash severity is the age of the driver. Most age groups face a high crash severity except for drivers between 60 and 100 years old, who have the lowest crash severity. The significant relationship identified between contributing factors consists of the time of the crash, the manufactured year of the vehicle, the age of the driver and hitting a tree. Having identified new contributing factors and relationships, a validation process is carried out using a traffic simulator in order to determine their accuracy. The validation process indicates that the results are accurate. This demonstrates that data mining techniques are a powerful tool in road safety research, and can be usefully applied within the Intelligent Transport System (ITS) domain. The research presented in this thesis provides an insight into the complexity of crashes on road curves. The findings of this research have important implications for both practitioners and academics. For road safety practitioners, the results from this research illustrate practical benefits for the design of interventions for road curves that will potentially help in decreasing related injuries and fatalities. For academics, this research opens up a new research methodology to assess crash severity, related to road crashes on curves.
Resumo:
Hirst and Patching's second edition of Journalism Ethics: Arguments and Cases provides a fully updated exploration of the theory and practice of ethics in journalism. The authors situate modern ethical dilemmas in their social and historical context, which encourages students to think critically about ethics across the study and practice of journalism. Using a unique political economy approach, the text provides students with a theoretical and philosophical understanding of the major ethical dilemmas in journalism today. It commences with a newly recast discussion of theoretical frameworks, which explains the complex concepts of ethics in clear and comprehensive terms. It then examines the 'fault lines' in modern journalism, such as the constant conflict between the public service role of the media, and a journalist's commercial imperative to make a profit. All chapters have been updated with new examples, and many new cases demonstrating the book's theoretical underpinnings have been drawn from 'yesterday's headlines'. These familiar cases encourage student engagement and classroom discussion, and archived cases will still be available to students on an Online Resource Centre. Expanded coverage of the 'War on Terror', issues of deception within journalism, and infotainment and digital technology is included.
Resumo:
Crashes at rail level crossings represent a significant problem, both in Australia and worldwide. Advances in driving assessment methods, such as the provision of on-road instrumented test vehicles, now provide researchers with the opportunity to further understand driver behaviour at rail level crossings in ways not previously possible. This paper gives an overview of a recent on-road pilot study of driver behaviour at rail level crossings in which 25 participants drove a pre-determined route, incorporating 4 rail level crossings, using MUARC's instrumented On-Road Test Vehicle (ORTeV). Drivers provided verbal commentary whilst driving the route, and a range of other data were collected, including eye fixations, forward, cockpit and driver video, and vehicle data (speed, braking, steering wheel angle, lane tracking etc). Participants also completed a post trial cognitive task analysis interview. Extracts from the wider analyses are used to examine in depth driver behaviour at one of the rail level crossings encountered during the study. The analysis presented, along with the overall analysis undertaken, gives insight into the driver and wider systems factors that shape behaviour at rail level crossings, and highlights the utility of using a multi-method, instrumented vehicle approach for gathering data regarding driver behaviour in different contexts.
Resumo:
In this paper, the optimal allocation and sizing of distributed generators (DGs) in a distribution system is studied. To achieve this goal, an optimization problem should be solved in which the main objective is to minimize the DGs cost and to maximise the reliability simultaneously. The active power balance between loads and DGs during the isolation time is used as a constraint. Another point considered in this process is the load shedding. It means that if the summation of DGs active power in a zone, isolated by the sectionalizers because of a fault, is less than the total active power of loads located in that zone, the program start shedding the loads in one-by-one using the priority rule still the active power balance is satisfied. This assumption decreases the reliability index, SAIDI, compared with the case loads in a zone are shed when total DGs power is less than the total load power. To validate the proposed method, a 17-bus distribution system is employed and the results are analysed.
Resumo:
Driving on motorways has largely been reduced to a lane-keeping task with cruise control. Rapidly, drivers are likely to get bored with such a task and take their attention away from the road. This is of concern in terms of road safety – particularly for professional drivers - since inattention has been identified as one of the main contributing factors to road crashes and is estimated to be involved in 20 to 30% of these crashes. Furthermore, drivers are not aware that their vigilance level has decreased and that their driving performance is impaired. Intelligent Transportation System (ITS) intervention can be used as a countermeasure against vigilance decrement. This paper aims to identify a variety of metrics impacted during monotonous driving - ranging from vehicle data to physiological variables - and relate them to two monotonous factors namely the monotony of the road design (straightness) and the monotony of the environment (landscape, signage, traffic). Data are collected in a driving simulator instrumented with an eye tracking system, a heart rate monitor and an electrodermal activity device (N=25 participants). The two monotonous factors are varied (high and low) leading to the use of four different driving scenarios (40 minutes each). We show with Generalised Linear Mixed Models that driver performance decreases faster when the road is monotonous. We also highlight that road monotony impairs a variety of driving performance and vigilance measures, ranging from speed, lateral position of the vehicle to physiological measurements such as heart rate variability, blink frequency and electrodermal activity. This study informs road designers of the importance of having a varied road environment. It also provides a range of metrics that can be used to detect in real-time the impairment of driving performance on monotonous roads. Such knowledge could result in the development of an in-vehicle device warning drivers at early signs of driving performance impairment on monotonous roads.
Resumo:
The over representation of novice drivers in crashes is alarming. Research indicates that one in five drivers’ crashes within their first year of driving. Driver training is one of the interventions aimed at decreasing the number of crashes that involve young drivers. Currently, there is a need to develop comprehensive driver evaluation system that benefits from the advances in Driver Assistance Systems. Since driving is dependent on fuzzy inputs from the driver (i.e. approximate distance calculation from the other vehicles, approximate assumption of the other vehicle speed), it is necessary that the evaluation system is based on criteria and rules that handles uncertain and fuzzy characteristics of the drive. This paper presents a system that evaluates the data stream acquired from multiple in-vehicle sensors (acquired from Driver Vehicle Environment-DVE) using fuzzy rules and classifies the driving manoeuvres (i.e. overtake, lane change and turn) as low risk or high risk. The fuzzy rules use parameters such as following distance, frequency of mirror checks, gaze depth and scan area, distance with respect to lanes and excessive acceleration or braking during the manoeuvre to assess risk. The fuzzy rules to estimate risk are designed after analysing the selected driving manoeuvres performed by driver trainers. This paper focuses mainly on the difference in gaze pattern for experienced and novice drivers during the selected manoeuvres. Using this system, trainers of novice drivers would be able to empirically evaluate and give feedback to the novice drivers regarding their driving behaviour.
Resumo:
Hand-held mobile phone use while driving is illegal throughout Australia yet many drivers persist with this behaviour. This study aims to understand the internal, driver-related and external, situational-related factors influencing drivers’ willingness to use a hand-held mobile phone while driving. Sampling 160 university students, this study utilised the Theory of Planned Behaviour (TPB) to examine a range of belief-based constructs. Additionally, drivers’ personality traits of neuroticism and extroversion were measured with the Neuroticism Extroversion Openness-Five Factor Inventory (NEO-FFI). In relation to the external, situational-related factors, four different driving-related scenarios, which were intended to evoke differing levels of drivers’ reported stress, were devised for the study and manipulated drivers’ time urgency (low versus high) and passenger presence (alone versus with friends). In these scenarios, drivers’ willingness to use a mobile phone in general was measured. Hierarchical regression analyses across the four different driving scenarios found that, overall, the TPB components significantly accounted for drivers’ willingness to use a mobile phone above and beyond the demographic variables. Subjective norms, however, was only a significant predictor of drivers’ willingness in situations where the drivers were driving alone. Generally, neuroticism and extroversion did not significantly predict drivers’ willingness above and beyond the TPB and demographic variables. Overall, the findings broaden our understanding of the internal and external factors influencing drivers’ willingness to use a hand-held mobile phone while driving despite the illegality of this behaviour. The findings may have important practical implications in terms of better informing road safety campaigns targeting drivers’ mobile phone use which, in turn, may contribute to a reduction in the extent that mobile phone use contributes to road crashes.
Resumo:
The contribution of risky behaviour to the increased crash and fatality rates of young novice drivers is recognised in the road safety literature around the world. Exploring such risky driver behaviour has led to the development of tools like the Driver Behaviour Questionnaire (DBQ) to examine driving violations, errors, and lapses [1]. Whilst the DBQ has been utilised in young novice driver research, some items within this tool seem specifically designed for the older, more experienced driver, whilst others appear to asses both behaviour and related motives. The current study was prompted by the need for a risky behaviour measurement tool that can be utilised with young drivers with a provisional driving licence. Sixty-three items exploring young driver risky behaviour developed from the road safety literature were incorporated into an online survey. These items assessed driver, passenger, journey, car and crash-related issues. A sample of 476 drivers aged 17-25 years (M = 19, SD = 1.59 years) with a provisional driving licence and matched for age, gender, and education were drawn from a state-wide sample of 761 young drivers who completed the survey. Factor analysis based upon a principal components extraction of factors was followed by an oblique rotation to investigate the underlying dimensions to young novice driver risky behaviour. A five factor solution comprising 44 items was identified, accounting for 55% of the variance in young driver risky behaviour. Factor 1 accounted for 32.5% of the variance and appeared to measure driving violations that were transient in nature - risky behaviours that followed risky decisions that occurred during the journey (e.g., speeding). Factor 2 accounted for 10.0% of variance and appeared to measure driving violations that were fixed in nature; the risky decisions being undertaken before the journey (e.g., drink driving). Factor 3 accounted for 5.4% of variance and appeared to measure misjudgment (e.g., misjudged speed of oncoming vehicle). Factor 4 accounted for 4.3% of variance and appeared to measure risky driving exposure (e.g., driving at night with friends as passengers). Factor 5 accounted for 2.8% of variance and appeared to measure driver emotions or mood (e.g., anger). Given that the aim of the study was to create a research tool, the factors informed the development of five subscales and one composite scale. The composite scale had a very high internal consistency measure (Cronbach’s alpha) of .947. Self-reported data relating to police-detected driving offences, their crash involvement, and their intentions to break road rules within the next year were also collected. While the composite scale was only weakly correlated with self-reported crashes (r = .16, p < .001), it was moderately correlated with offences (r = .26, p < .001), and highly correlated with their intentions to break the road rules (r = .57, p < .001). Further application of the developed scale is needed to confirm the factor structure within other samples of young drivers both in Australia and in other countries. In addition, future research could explore the applicability of the scale for investigating the behaviour of other types of drivers.