989 resultados para Assignment Problems
Resumo:
Due to its popularity, dense deployments of wireless local area networks (WLANs) are becoming a common feature of many cities around the world. However, with only a limited number of channels available, the problem of increased interference can severely degrade the performance of WLANs if an effective channel assignment scheme is not employed. In an earlier work, we proposed an improved asynchronous distributed and dynamic channel assignment scheme that (1) is simple to implement, (2) does not require any knowledge of the throughput function, and (3) allows asynchronous channel switching by each access point (AP). In this paper, we present extensive performance evaluation of the proposed scheme in practical scenarios found in densely populated WLAN deployments. Specifically, we investigate the convergence behaviour of the scheme and how its performance gains vary with different number of available channels and in different deployment densities. We also prove that our scheme is guaranteed to converge in a single iteration when the number of channels is greater than the number of neighbouring APs.
Resumo:
Due to their popularity, dense deployments of wireless local area networks (WLANs) are becoming a common feature of many cities around the world. However, with only a limited number of channels available, the problem of increased interference can severely degrade the performance of WLANs if an effective channel assignment scheme is not employed. Previous studies on channel assignment in WLANs almost always assume that all access points (AP) employ the same channel assignment scheme which is clearly unrealistic. On the other hand, to the best of our knowledge, the interaction between different channel assignment schemes has also not been studied before. Therefore, in this paper, we investigate the effectiveness of our earlier proposed asynchronous channel assignment scheme in these heterogeneous WLANs scenarios. Simulation results show that our proposed scheme is still able to provide robust performance gains even in these scenarios.
Resumo:
Wireless local area networks (WLANs) have changed the way many of us communicate, work, play and live. Due to its popularity, dense deployments are becoming a norm in many cities around the world. However, increased interference and traffic demands can severely limit the aggregate throughput achievable if an effective channel assignment scheme is not used. In this paper, we propose an enhanced asynchronous distributed and dynamic channel assignment scheme that is simple to implement, does not require any knowledge of the throughput function, allows asynchronous channel switching by each access point (AP) and is superior in performance. Simulation results show that our proposed scheme converges much faster than previously reported synchronous schemes, with a reduction in convergence time and channel switches by tip to 73.8% and 30.0% respectively.
Resumo:
The popularity of wireless local area networks (WLANs) has resulted in their dense deployment in many cities around the world. The increased interference among different WLANs severely degrades the throughput achievable. This problem has been further exacerbated by the limited number of frequency channels available. An improved distributed and dynamic channel assignment scheme that is simple to implement and does not depend on the knowledge of the throughput function is proposed in this work. It also allows each access point (AP) to asynchronously switch to the new best channel. Simulation results show that our proposed scheme converges much faster than similar previously reported work, with a reduction in convergence time and channel switches as much as 77.3% and 52.3% respectively. When it is employed in dynamic environments, the throughput improves by up to 12.7%.
Resumo:
This paper illustrates how nonlinear programming and simulation tools, which are available in packages such as MATLAB and SIMULINK, can easily be used to solve optimal control problems with state- and/or input-dependent inequality constraints. The method presented is illustrated with a model of a single-link manipulator. The method is suitable to be taught to advanced undergraduate and Master's level students in control engineering.
Resumo:
This paper considers the motion planning problem for oriented vehicles travelling at unit speed in a 3-D space. A Lie group formulation arises naturally and the vehicles are modeled as kinematic control systems with drift defined on the orthonormal frame bundles of particular Riemannian manifolds, specifically, the 3-D space forms Euclidean space E-3, the sphere S-3, and the hyperboloid H'. The corresponding frame bundles are equal to the Euclidean group of motions SE(3), the rotation group SO(4), and the Lorentz group SO (1, 3). The maximum principle of optimal control shifts the emphasis for these systems to the associated Hamiltonian formalism. For an integrable case, the extremal curves are explicitly expressed in terms of elliptic functions. In this paper, a study at the singularities of the extremal curves are given, which correspond to critical points of these elliptic functions. The extremal curves are characterized as the intersections of invariant surfaces and are illustrated graphically at the singular points. It. is then shown that the projections, of the extremals onto the base space, called elastica, at these singular points, are curves of constant curvature and torsion, which in turn implies that the oriented vehicles trace helices.
Resumo:
In this paper we deal with performance analysis of Monte Carlo algorithm for large linear algebra problems. We consider applicability and efficiency of the Markov chain Monte Carlo for large problems, i.e., problems involving matrices with a number of non-zero elements ranging between one million and one billion. We are concentrating on analysis of the almost Optimal Monte Carlo (MAO) algorithm for evaluating bilinear forms of matrix powers since they form the so-called Krylov subspaces. Results are presented comparing the performance of the Robust and Non-robust Monte Carlo algorithms. The algorithms are tested on large dense matrices as well as on large unstructured sparse matrices.
Resumo:
In this paper we analyse applicability and robustness of Markov chain Monte Carlo algorithms for eigenvalue problems. We restrict our consideration to real symmetric matrices. Almost Optimal Monte Carlo (MAO) algorithms for solving eigenvalue problems are formulated. Results for the structure of both - systematic and probability error are presented. It is shown that the values of both errors can be controlled independently by different algorithmic parameters. The results present how the systematic error depends on the matrix spectrum. The analysis of the probability error is presented. It shows that the close (in some sense) the matrix under consideration is to the stochastic matrix the smaller is this error. Sufficient conditions for constructing robust and interpolation Monte Carlo algorithms are obtained. For stochastic matrices an interpolation Monte Carlo algorithm is constructed. A number of numerical tests for large symmetric dense matrices are performed in order to study experimentally the dependence of the systematic error from the structure of matrix spectrum. We also study how the probability error depends on the balancing of the matrix. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
We study boundary value problems for a linear evolution equation with spatial derivatives of arbitrary order, on the domain 0 < x < L, 0 < t < T, with L and T positive nite constants. We present a general method for identifying well-posed problems, as well as for constructing an explicit representation of the solution of such problems. This representation has explicit x and t dependence, and it consists of an integral in the k-complex plane and of a discrete sum. As illustrative examples we solve some two-point boundary value problems for the equations iqt + qxx = 0 and qt + qxxx = 0.
Resumo:
We investigate the spectrum of certain integro-differential-delay equations (IDDEs) which arise naturally within spatially distributed, nonlocal, pattern formation problems. Our approach is based on the reformulation of the relevant dispersion relations with the use of the Lambert function. As a particular application of this approach, we consider the case of the Amari delay neural field equation which describes the local activity of a population of neurons taking into consideration the finite propagation speed of the electric signal. We show that if the kernel appearing in this equation is symmetric around some point a= 0 or consists of a sum of such terms, then the relevant dispersion relation yields spectra with an infinite number of branches, as opposed to finite sets of eigenvalues considered in previous works. Also, in earlier works the focus has been on the most rightward part of the spectrum and the possibility of an instability driven pattern formation. Here, we numerically survey the structure of the entire spectra and argue that a detailed knowledge of this structure is important within neurodynamical applications. Indeed, the Amari IDDE acts as a filter with the ability to recognise and respond whenever it is excited in such a way so as to resonate with one of its rightward modes, thereby amplifying such inputs and dampening others. Finally, we discuss how these results can be generalised to the case of systems of IDDEs.
Resumo:
In a previous paper (J. of Differential Equations, Vol. 249 (2010), 3081-3098) we examined a family of periodic Sturm-Liouville problems with boundary and interior singularities which are highly non-self-adjoint but have only real eigenvalues. We now establish Schatten class properties of the associated resolvent operator.