996 resultados para Art objects.
Resumo:
Context.Massive stars form in dense and massive molecular cores. The exact formation mechanism is unclear, but it is possible that some massive stars are formed by processes similar to those that produce the low-mass stars, with accretion/ejection phenomena occurring at some point of the evolution of the protostar. This picture seems to be supported by the detection of a collimated stellar wind emanating from the massive protostar IRAS 16547-4247. A triple radio source is associated with the protostar: a compact core and two radio lobes. The emission of the southern lobe is clearly non-thermal. Such emission is interpreted as synchrotron radiation produced by relativistic electrons locally accelerated at the termination point of a thermal jet. Since the ambient medium is determined by the properties of the molecular cloud in which the whole system is embedded, we can expect high densities of particles and infrared photons. Because of the confirmed presence of relativistic electrons, inverse Compton and relativistic Bremsstrahlung interactions are unavoidable. Aims.We aim to make quantitative predictions of the spectral energy distribution of the non-thermal spots generated by massive young stellar objects, with emphasis on the particular case of IRAS 16547-4247. Methods.We study the high-energy emission generated by the relativistic electrons which produce the non-thermal radio source in IRAS 16547-4247. We also study the result of proton acceleration at the terminal shock of the thermal jet and make estimates of the secondary gamma rays and electron-positron pairs produced by pion decay. Results.We present spectral energy distributions for the southern lobe of IRAS 16547-4247, for a variety of conditions. We show that high-energy emission might be detectable from this object in the gamma-ray domain. The source may also be detectable in X-rays through long exposures with current X-ray instruments. Conclusions.Gamma-ray telescopes such as GLAST, and even ground-based Cherenkov arrays of new generation can be used to study non-thermal processes occurring during the formation of massive stars.
Resumo:
The dual-stream model of auditory processing postulates separate processing streams for sound meaning and for sound location. The present review draws on evidence from human behavioral and activation studies as well as from lesion studies to argue for a position-linked representation of sound objects that is distinct both from the position-independent representation within the ventral/What stream and from the explicit sound localization processing within the dorsal/Where stream.
Resumo:
In recent years, evidence has emerged for a bidirectional relationship between sleep and neurological and psychiatric disorders. First, sleep-wake disorders (SWDs) are very common and may be the first/main manifestation of underlying neurological and psychiatric disorders. Secondly, SWDs may represent an independent risk factor for neuropsychiatric morbidities. Thirdly, sleep-wake function (SWF) may influence the course and outcome of neurological and psychiatric disorders. This review summarizes the most important research and clinical findings in the fields of neuropsychiatric sleep and circadian research and medicine, and discusses the promise they bear for the next decade. The findings herein summarize discussions conducted in a workshop with 26 European experts in these fields, and formulate specific future priorities for clinical practice and translational research. More generally, the conclusion emerging from this workshop is the recognition of a tremendous opportunity offered by our knowledge of SWF and SWDs that has unfortunately not yet entered as an important key factor in clinical practice, particularly in Europe. Strengthening pre-graduate and postgraduate teaching, creating academic multidisciplinary sleep-wake centres and simplifying diagnostic approaches of SWDs coupled with targeted treatment strategies yield enormous clinical benefits for these diseases.