860 resultados para Architecture and climate
Resumo:
The article explores the role of international environmental legal principles and their role in future climate change instruments. The five international environmental legal principles explored in this context are: inter and intergenerational equity, the precautionary principle, common but differentiated responsibility, the polluter pays and principle and the principles of responsibility and prevention. Principles are used within regulatory frameworks to guide the interpretation and implementation of the obligations specified within the instrument. It is found that these principles provide a useful basis for the development of international adaptation and mitigation measures that are equitable and ethical in nature. This article argues that these principles must be drafted more strategically into international climate change instruments allowing them to serve as a foundational basis upon which more stringent and equitable binding duties and rights can be derived from. This article makes some recommendations as to the type of obligations that these principles could be used to inform in future climate instruments.
Resumo:
The inner city Brisbane suburbs of the West End peninsula are poised for redevelopment. Located within walking distance to CBD workplaces, home to Queensland’s highest value cultural precinct, and high quality riverside parklands, there is currently a once-in-a-lifetime opportunity to redevelop parts of the suburb to create a truly urban neighbourhood. According to a local community association, local residents agree and embrace the concept of high-density living, but are opposed to the high-rise urban form (12 storeys) advocated by the City’s planning authority (BCC, 2011) and would prefer to see medium-rise (5-8 storeys) medium-density built form. Brisbane experienced a major flood event which inundated the peninsula suburbs of West End in summer January 2011. The vulnerability of taller buildings to the vagaries of climate and more extreme weather events and their reliance on main electricity was exposed when power outages immediately before, during and after the flood disaster seriously limited occupants’ access and egress when elevators were disabled. Not all buildings were flooded but dwellings quickly became unliveable due to disabled air-conditioning. Some tall buildings remained uninhabitable for several weeks after the event. This paper describes an innovative design research method applied to the complex problem of resilient, sustainable neighbourhood form in subtropical cities, in which a thorough comparative analysis of a range of multiple-dwelling types has revealed the impact that government policy regarding design of the physical environment has on a community’s resilience. The outcomes advocate the role of climate-responsive design in averting the rising human capital and financial costs of natural disasters and climate change.
Resumo:
A series of flooding events occurred in Queensland, Australia during December 2010 and January 2011. The state’s capital city of Brisbane experienced major flooding in January 2011, when the Brisbane River broke its bank and inundated low lying areas.
Resumo:
Many Brisbane houses were affected by water inundation as a result of the flooding event which occurred in January 2011. The combination of waterlogged materials and large amounts of silt and organic debris in affected homes gave rise to a situation where exposures to airborne particles could potentially be elevated. However, swift action to remove wet materials and dry out the building structures can help to reduce moisture and humidity in flooded houses, in an effort to prevent the growth of bacteria and mould and improve indoor air quality in and around flooded areas. To test this hypothesis, field measurements were carried out during 21 March and 3 May, 2011.
Resumo:
While there are sources of ions both outdoors and indoors, ventilation systems can introduce as well as remove ions from the air. As a result, indoor ion concentrations are not directly related to air exchange rates in buildings. In this study, we attempt to relate these quantities with the view of understanding how charged particles may be introduced into indoor spaces.
Resumo:
Well-designed indoor environments can support people’s health and welfare. In this literature review, we identify the environmental features that affect human health and wellbeing. Environmental characteristics found to influence health outcomes and/or wellbeing included: environmental safety; indoor air quality (e.g. odour and temperature); sound and noise; premises and interior design (e.g. construction materials, viewing nature and experiencing nature, windows versus no windows, light, colours, unit layout and placement of the furniture, the type of room, possibilities to control environmental elements, environmental complexity and sensory simulations, cleanliness, ergonomics and accessibility, ‛‛wayfinding’’); art, and music, among others. Indoor environments that incorporate healing elements can, for instance, reduce anxiety, lower blood pressure, lessen pain and shorten hospital stays.
Resumo:
Vehicle emissions are a significant source of fine particles (Dp < 2.5 µm) in an urban environment. These fine particles have been shown to have detrimental health effects, with children thought to be more susceptible. Vehicle emissions are mainly carbonaceous in nature, and carbonaceous aerosols can be defined as either elemental carbon (EC) or organic carbon (OC). EC is a soot-like material emitted from primary sources while OC fraction is a complex mixture of hundreds of organic compounds from either primary or secondary sources (Cao et al., 2006). Therefore the ratio of OC/EC can aid in the identification of source. The purpose of this paper is to use the concentration of OC and EC in fine particles to determine the levels of vehicle emissions in schools. It is expected that this will improve the understanding of the potential exposure of children in a school environment to vehicle emissions.
Resumo:
Many Brisbane houses were affected by water inundation as a result of the flooding event which occurred in January 2011. The combination of waterlogged materials and large amounts of silt and organic debris in affected homes gave rise to a situation where exposures to airborne particles and dust could potentially be elevated. However, swift action to remove wet materials can help to reduce moisture and humidity in flooded houses, in an effort to improve indoor air quality in and around flooded areas. In order to gain an understanding of the effect of flooding on the concentration of inorganic elements in indoor dust, field measurements were carried out during 21 March and 3 May, 2011.
Resumo:
In 1984 the School of Architecture and Built Environment within the University of Newcastle, Australia introduced an integrated program based on real design projects and using Integrated Problem Based Learning (IPBL) as the teaching method. Since 1984 there have been multiple changes arising from the expectations of the architectural fraternity, enrolling students, lecturers, available facilities, accreditation authorities and many others. These challenges have been successfully accommodated whilst maintaining the original purposes and principles of IPBL. The Architecture program has a combined two-degree structure consisting of a first degree, Bachelor of Science (Architecture), followed by a second degree, Bachelor of Architecture. The program is designed to simulate the problem-solving situations that face a working architect in every day practice. This paper will present the degree structure where each student is enrolled in a single course per semester incorporating design integration and study areas in design studies, professional studies, historical studies, technical studies, environmental studies and communication skills. Each year the design problems increase in complexity and duration set around an annual theme. With 20 years of successful delivery of any program there are highlights and challenges along the way and this paper will discuss some of the successes and barriers experienced within the School of Architecture and Built Environment in delivering IPBL. In addition, the reflective process investigates the currency of IPBL as an appropriate vehicle for delivering the curriculum in 2004 and any additional administrative or staff considerations required to enhance the continuing application of IPBL.
Resumo:
Barmah Forest virus (BFV) disease is one of the most widespread mosquito-borne diseases in Australia. The number of outbreaks and the incidence rate of BFV in Australia have attracted growing concerns about the spatio-temporal complexity and underlying risk factors of BFV disease. A large number of notifications has been recorded continuously in Queensland since 1992. Yet, little is known about the spatial and temporal characteristics of the disease. I aim to use notification data to better understand the effects of climatic, demographic, socio-economic and ecological risk factors on the spatial epidemiology of BFV disease transmission, develop predictive risk models and forecast future disease risks under climate change scenarios. Computerised data files of daily notifications of BFV disease and climatic variables in Queensland during 1992-2008 were obtained from Queensland Health and Australian Bureau of Meteorology, respectively. Projections on climate data for years 2025, 2050 and 2100 were obtained from Council of Scientific Industrial Research Organisation. Data on socio-economic, demographic and ecological factors were also obtained from relevant government departments as follows: 1) socio-economic and demographic data from Australian Bureau of Statistics; 2) wetlands data from Department of Environment and Resource Management and 3) tidal readings from Queensland Department of Transport and Main roads. Disease notifications were geocoded and spatial and temporal patterns of disease were investigated using geostatistics. Visualisation of BFV disease incidence rates through mapping reveals the presence of substantial spatio-temporal variation at statistical local areas (SLA) over time. Results reveal high incidence rates of BFV disease along coastal areas compared to the whole area of Queensland. A Mantel-Haenszel Chi-square analysis for trend reveals a statistically significant relationship between BFV disease incidence rates and age groups (ƒÓ2 = 7587, p<0.01). Semi-variogram analysis and smoothed maps created from interpolation techniques indicate that the pattern of spatial autocorrelation was not homogeneous across the state. A cluster analysis was used to detect the hot spots/clusters of BFV disease at a SLA level. Most likely spatial and space-time clusters are detected at the same locations across coastal Queensland (p<0.05). The study demonstrates heterogeneity of disease risk at a SLA level and reveals the spatial and temporal clustering of BFV disease in Queensland. Discriminant analysis was employed to establish a link between wetland classes, climate zones and BFV disease. This is because the importance of wetlands in the transmission of BFV disease remains unclear. The multivariable discriminant modelling analyses demonstrate that wetland types of saline 1, riverine and saline tidal influence were the most significant risk factors for BFV disease in all climate and buffer zones, while lacustrine, palustrine, estuarine and saline 2 and saline 3 wetlands were less important. The model accuracies were 76%, 98% and 100% for BFV risk in subtropical, tropical and temperate climate zones, respectively. This study demonstrates that BFV disease risk varied with wetland class and climate zone. The study suggests that wetlands may act as potential breeding habitats for BFV vectors. Multivariable spatial regression models were applied to assess the impact of spatial climatic, socio-economic and tidal factors on the BFV disease in Queensland. Spatial regression models were developed to account for spatial effects. Spatial regression models generated superior estimates over a traditional regression model. In the spatial regression models, BFV disease incidence shows an inverse relationship with minimum temperature, low tide and distance to coast, and positive relationship with rainfall in coastal areas whereas in whole Queensland the disease shows an inverse relationship with minimum temperature and high tide and positive relationship with rainfall. This study determines the most significant spatial risk factors for BFV disease across Queensland. Empirical models were developed to forecast the future risk of BFV disease outbreaks in coastal Queensland using existing climatic, socio-economic and tidal conditions under climate change scenarios. Logistic regression models were developed using BFV disease outbreak data for the existing period (2000-2008). The most parsimonious model had high sensitivity, specificity and accuracy and this model was used to estimate and forecast BFV disease outbreaks for years 2025, 2050 and 2100 under climate change scenarios for Australia. Important contributions arising from this research are that: (i) it is innovative to identify high-risk coastal areas by creating buffers based on grid-centroid and the use of fine-grained spatial units, i.e., mesh blocks; (ii) a spatial regression method was used to account for spatial dependence and heterogeneity of data in the study area; (iii) it determined a range of potential spatial risk factors for BFV disease; and (iv) it predicted the future risk of BFV disease outbreaks under climate change scenarios in Queensland, Australia. In conclusion, the thesis demonstrates that the distribution of BFV disease exhibits a distinct spatial and temporal variation. Such variation is influenced by a range of spatial risk factors including climatic, demographic, socio-economic, ecological and tidal variables. The thesis demonstrates that spatial regression method can be applied to better understand the transmission dynamics of BFV disease and its risk factors. The research findings show that disease notification data can be integrated with multi-factorial risk factor data to develop build-up models and forecast future potential disease risks under climate change scenarios. This thesis may have implications in BFV disease control and prevention programs in Queensland.
Resumo:
A year ago, I became aware of the historical existence of the group CERFI— Le centre d’etudes, de recherches, et de formation institutionelles, or The Study Center for Institutional Research and Formation. CERFI emerged in 1967 under the hand of Lacanian psychiatrist and Trotskyite activist Félix Guattari, whose antonymous journal Recherches chronicled the group’s subversive experiences, experiments, and government-sponsored urban projects. It was a singularly bizarre meeting of the French bureaucracy with militant activist groups, the French intelligentsia, and architectural and planning practitioners at the close of the ‘60s. Nevertheless, CERFI’s analysis of the problems of society was undertaken precisely from the perspective of the state, and the Institute acknowledged a “deep complicity between the intellectual and statesman ... because the first critics of the State, are officials themselves!”1 CERFI developed out of FGERI (The Federation of Groups for Institutional Study and Research), started by Guattari two years earlier. While FGERI was created for the analysis of mental institutions stemming from Guattari’s work at La Borde, an experimental psychiatric clinic, CERFI marks the group’s shift toward urbanism—to the interrogation of the city itself. Not only a platform for radical debate on architecture and the city, CERFI was a direct agent in the development of urban planning schemata for new towns in France. 2 CERFI’s founding members were Guattari, the economist and urban theorist François Fourquet, feminist philosopher Liane Mozère, and urban planner and editor of Multitides Anne Querrien—Guattari’s close friend and collaborator. The architects Antoine Grumback, Alain Fabre, Macary, and Janine Joutel were also members, as well as urbanists Bruno Fortier, Rainier Hoddé, and Christian de Portzamparc. 3 CERFI was the quintessential social project of post-‘68 French urbanism. Located on the Far Left and openly opposed to the Communist Party, this Trotskyist cooperative was able to achieve what other institutions, according to Fourquet, with their “customary devices—the politburo, central committee, and the basic cells—had failed to do.”4 The decentralized institute recognized that any formal integration of the group was to “sign its own death warrant; so it embraced a skein of directors, entangled, forming knots, liquidating all at once, and spinning in an unknown direction, stopping short and returning back to another node.” Allergic to the very idea of “party,” CERFI was a creative project of free, hybrid-aesthetic blocs talking and acting together, whose goal was none other than the “transformation of the libidinal economy of the militant revolutionary.” The group believed that by recognizing and affirming a “group unconscious,” as well as their individual unconscious desires, they would be able to avoid the political stalemates and splinter groups of the traditional Left. CERFI thus situated itself “on the side of psychosis”—its confessed goal was to serve rather than repress the utter madness of the urban malaise, because it was only from this mad perspective on the ground that a properly social discourse on the city could be forged.
Resumo:
Reliable communications is one of the major concerns in wireless sensor networks (WSNs). Multipath routing is an effective way to improve communication reliability in WSNs. However, most of existing multipath routing protocols for sensor networks are reactive and require dynamic route discovery. If there are many sensor nodes from a source to a destination, the route discovery process will create a long end-to-end transmission delay, which causes difficulties in some time-critical applications. To overcome this difficulty, the efficient route update and maintenance processes are proposed in this paper. It aims to limit the amount of routing overhead with two-tier routing architecture and introduce the combination of piggyback and trigger update to replace the periodic update process, which is the main source of unnecessary routing overhead. Simulations are carried out to demonstrate the effectiveness of the proposed processes in improvement of total amount of routing overhead over existing popular routing protocols.
Resumo:
BACKGROUND: Although many studies have shown that high temperatures are associated with an increased risk of mortality and morbidity, there has been little research on managing the process of planned adaptation to alleviate the health effects of heat events and climate change. In particular, economic evaluation of public health adaptation strategies has been largely absent from both the scientific literature and public policy discussion. OBJECTIVES: his paper aims to discuss how public health organizations should implement adaptation strategies, and how to improve the evidence base for policies to protect health from heat events and climate change. DISCUSSION: Public health adaptation strategies to cope with heat events and climate change fall into two categories: reducing the heat exposure and managing the health risks. Strategies require a range of actions, including timely public health and medical advice, improvements to housing and urban planning, early warning systems, and the assurance that health care and social systems are ready to act. Some of these actions are costly, and the implementation should be based on the cost-effectiveness analysis given scarce financial resources. Therefore, research is required not only on the temperature-related health costs, but also on the costs and benefits of adaptation options. The scientific community must ensure that the health co-benefits of climate change policies are recognized, understood and quantified. CONCLUSIONS: The integration of climate change adaptation into current public health practice is needed to ensure they increase future resilience. The economic evaluation of temperature-related health costs and public health adaptation strategies are particularly important for policy decisions.
Resumo:
One of the ways in which indigenous communities seek justice is through the formal recognition of their sovereign rights to land. Such recognition allows indigenous groups to maintain a physical and spiritual connection with their land and continue customary management of their land. Indigenous groups world over face significant hurdles in getting their customary rights to land recognized by legal systems. One of the main difficulties for indigenous groups in claiming customary land rights is the existence of a range of conflicting legal entitlements attaching to the land in question. In Australia, similar to New Zealand and Canada legal recognition to customary land is recognized through a grant of native title rights or through the establishment of land use agreement. In other jurisdictions such as Indonesia and Papua New Guinea a form of customary land title has been preserved and is recognized by the legal system. The implementation of REDD+ and other forms of forest carbon investment activities compounds the already complex arrangements surrounding legal recognition of customary land rights. Free, prior and informed consent of indigenous groups is essential for forest carbon investment on customary land. The attainment of such consent in practice remains challenging due to the number of conflicting interests often associated with forested land. This paper examines Australia’s experience in recongising indigenous land rights under its International Forest Carbon Initiative and under its domestic Carbon Credits (Carbon Farming Initiative) Act (Australia) 2011. Australia’s International Forest Carbon initiative has a budget of $273 million dollars. In 2008 the governments of Australia and Indonesia signed the Indonesia-Australia Forest Carbon Partnership Agreement. This paper will examine the indigenous land tenure and justice lessons learned from the implementation of the Kalimantan Forest and Climate Partnership (KFCP). The KFCP is $30 million dollar project taking place over 120,000 hectares of degraded and forested peatland in Central Kalimantan, Indonesia. The KFCP project site contains seven villages of the Dayak Ngdu indigenous people. In 2011 Australia established a domestic Forest Carbon Initiative, which seeks to provide new economic opportunities for farmers, forest growers and indigenous landholders while helping the environmental by reducing carbon pollution. This paper will explore the manner in which indigenous people are able to participate within these scheme noting the limits and opportunities in deriving co-benefits for indigenous people in Australia under this scheme.