849 resultados para Applied artificial intelligence
Resumo:
For first-order Horn clauses without equality, resolution is complete with an arbitrary selection of a single literal in each clause [dN 96]. Here we extend this result to the case of clauses with equality for superposition-based inference systems. Our result is a generalization of the result given in [BG 01]. We answer their question about the completeness of a superposition-based system for general clauses with an arbitrary selection strategy, provided there exists a refutation without applications of the factoring inference rule.
Resumo:
We prove the completeness of the regular strategy of derivations for superposition-based calculi. The regular strategy was pioneered by Kanger in [Kan63], who proposed that all equality inferences take place before all other steps in the proof. We show that the strategy is complete with the elimination of tautologies. The implication of our result is the completeness of non-standard selection functions by which in non-relational clauses only equality literals (and all of them) are selected.
Resumo:
First-order temporal logic is a coincise and powerful notation, with many potential applications in both Computer Science and Artificial Intelligence. While the full logic is highly complex, recent work on monodic first-order temporal logics have identified important enumerable and even decidable fragments. In this paper we present the first resolution-based calculus for monodic first-order temporal logic. Although the main focus of the paper is on establishing completeness result, we also consider implementation issues and define a basic loop-search algorithm that may be used to guide the temporal resolution system.
Resumo:
In this paper we show how to extend clausal temporal resolution to the ground eventuality fragment of monodic first-order temporal logic, which has recently been introduced by Hodkinson, Wolter and Zakharyaschev. While a finite Hilbert-like axiomatization of complete monodic first order temporal logic was developed by Wolter and Zakharyaschev, we propose a temporal resolution-based proof system which reduces the satisfiability problem for ground eventuality monodic first-order temporal formulae to the satisfiability problem for formulae of classical first-order logic.